Visible to the public Biblio

Filters: Keyword is fingerprint scan  [Clear All Filters]
2020-03-02
Gulsezim, Duisen, Zhansaya, Seiitkaliyeva, Razaque, Abdul, Ramina, Yestayeva, Amsaad, Fathi, Almiani, Muder, Ganda, Raouf, Oun, Ahmed.  2019.  Two Factor Authentication using Twofish Encryption and Visual Cryptography Algorithms for Secure Data Communication. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :405–411.
Dependence of the individuals on the Internet for performing the several actions require secure data communication. Thus, the reliable data communication improves the confidentiality. As, enhanced security leads to reliable and faster communication. To improve the reliability and confidentiality, there is dire need of fully secured authentication method. There are several methods of password protections were introduced to protect the confidentiality and reliability. Most of the existing methods are based on alphanumeric approaches, but few methods provide the dual authentication process. In this paper, we introduce improved graphical password authentication using Twofish Encryption and Visual Cryptography (TEVC) method. Our proposed TEVC is unpredictably organized as predicting the correct graphical password and arranging its particles in the proper order is harder as compared to traditional alphanumeric password system. TEVC is tested by using JAVA platform. Based on the testing results, we confirm that proposed TEVC provides secure authentication. TEVC encryption algorithm detected as more prudent and possessing lower time complexity as compared to other known existing algorithms message code confirmation and fingerprint scan with password.
2018-01-10
Hu, P., Pathak, P. H., Shen, Y., Jin, H., Mohapatra, P..  2017.  PCASA: Proximity Based Continuous and Secure Authentication of Personal Devices. 2017 14th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–9.
User's personal portable devices such as smartphone, tablet and laptop require continuous authentication of the user to prevent against illegitimate access to the device and personal data. Current authentication techniques require users to enter password or scan fingerprint, making frequent access to the devices inconvenient. In this work, we propose to exploit user's on-body wearable devices to detect their proximity from her portable devices, and use the proximity for continuous authentication of the portable devices. We present PCASA which utilizes acoustic communication for secure proximity estimation with sub-meter level accuracy. PCASA uses Differential Pulse Position Modulation scheme that modulates data through varying the silence period between acoustic pulses to ensure energy efficiency even when authentication operation is being performed once every second. It yields an secure and accurate distance estimation even when user is mobile by utilizing Doppler effect for mobility speed estimation. We evaluate PCASA using smartphone and smartwatches, and show that it supports up to 34 hours of continuous authentication with a fully charged battery.