Biblio
The subsystem of IoMT (Internet of Military of Things) called IoBT (Internet of Battle of Things) is the major resource of the military where the various stack holders of the battlefield and different categories of equipment are tightly integrated through the internet. The proposed architecture mentioned in this paper will be helpful to design IoBT effectively for warfare using irresistible technologies like information technology, embedded technology, and network technology. The role of Machine intelligence is essential in IoBT to create smart things and provide accurate solutions without human intervention. Non-Destructive Testing (NDT) is used in Industries to examine and analyze the invisible defects of equipment. Generally, the ultrasonic waves are used to examine and analyze the internal defects of materials. Hence the proposed architecture of IoBT is enhanced by ultrasonic based NDT to study the properties of the things of the battlefield without causing any damage.
In this work, a measurement system is developed based on acoustic resonance which can be used for classification of materials. Basically, the inspection methods based on acoustic, utilized for containers screening in the field, identification of defective pills hold high significance in the fields of health, security and protection. However, such techniques are constrained by costly instrumentation, offline analysis and complexities identified with transducer holder physical coupling. So a simple, non-destructive and amazingly cost effective technique in view of acoustic resonance has been formulated here for quick data acquisition and analysis of acoustic signature of liquids for their constituent identification and classification. In this system, there are two ceramic coated piezoelectric transducers attached at both ends of V-shaped glass, one is act as transmitter and another as receiver. The transmitter generates sound with the help of white noise generator. The pick up transducer on another end of the V-shaped glass rod detects the transmitted signal. The recording is being done with arduino interfaced to computer. The FFTs of recorded signals are being analyzed and the resulted resonant frequency observed for water, water+salt and water+sugar are 4.8 KHz, 6.8 KHz and 3.2 KHz respectively. The different resonant frequency in case different sample is being observed which shows that the developed prototype model effectively classifying the materials.