Visible to the public Biblio

Filters: Keyword is ultrasonic materials testing  [Clear All Filters]
2020-11-17
Radha, P., Selvakumar, N., Sekar, J. Raja, Johnsonselva, J. V..  2018.  Enhancing Internet of Battle Things using Ultrasonic assisted Non-Destructive Testing (Technical solution). 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). :1—4.

The subsystem of IoMT (Internet of Military of Things) called IoBT (Internet of Battle of Things) is the major resource of the military where the various stack holders of the battlefield and different categories of equipment are tightly integrated through the internet. The proposed architecture mentioned in this paper will be helpful to design IoBT effectively for warfare using irresistible technologies like information technology, embedded technology, and network technology. The role of Machine intelligence is essential in IoBT to create smart things and provide accurate solutions without human intervention. Non-Destructive Testing (NDT) is used in Industries to examine and analyze the invisible defects of equipment. Generally, the ultrasonic waves are used to examine and analyze the internal defects of materials. Hence the proposed architecture of IoBT is enhanced by ultrasonic based NDT to study the properties of the things of the battlefield without causing any damage.

2020-02-24
Suzuki, Yuhei, Ichikawa, Yuichi, Yamada, Hisato, Ikushima, Kenji.  2019.  Nondestructive evaluation of residual stress through acoustically stimulated electromagnetic response in welded steel. 2019 IEEE International Ultrasonics Symposium (IUS). :1564–1566.
Tensile residual stresses combined with an applied tensile stress can reduce the reliability of steel components. Nondestructive evaluation of residual stress is thus important to avoid unintended fatigue or cracking. Because magnetic hysteresis properties of ferromagnetic materials are sensitive to stress, nondestructive evaluation of residual stress through magnetic properties can be expected. The spatial mapping of local magnetic hysteresis properties becomes possible by using the acoustically stimulated electromagnetic (ASEM) method and the tensile stress dependence of the hysteresis properties has been investigated in steel. It is found that the coercivity Hc and the remanent magnetization signal Vr monotonically decrease with increasing the tensile stress. In this work, we verified the detection of residual stresses through the ASEM response in a welded steel plate. Tensile stresses are intentionally introduced on the opposite side of the partially welded face by controlling welding temperatures. We found that Hc and Vr clearly decrease in the welded region, suggesting that the presence of tensile residual stresses is well detected by the hysteresis parameters.
2020-01-13
Wang, Xiao-yu, Li, Cong-cong, Wu, Hao-dong, Zhang, De, Zhang, Xiao-dong, Gong, Xun.  2019.  NDE Application of Air-Coupled Transducer for Surface Crack Detection. 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). :1–4.
According to the technical difficulties of the air-coupled piezoelectric ultrasonic transducer, 1-3 type piezoelectric composites and double matching layers structure are adopted in order to solve the acoustic impedance mismatch at the interface between the piezoelectric materials and air. The optimal design of the matching layer thickness for double matching layers structure air-coupled ultrasonic transducer is also completed through experiments. Based on this, 440 kHz flat-plate and focused air-coupled piezoelectric ultrasonic transducer are designed, fabricated and characterized. Finally, surface cracks are detected using the focused air-coupled piezoelectric ultrasonic transducer.
2018-12-10
Khan, M., Reza, M. Q., Sirdeshmukh, S. P. S. M. A..  2017.  A prototype model development for classification of material using acoustic resonance spectroscopy. 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT). :128–131.

In this work, a measurement system is developed based on acoustic resonance which can be used for classification of materials. Basically, the inspection methods based on acoustic, utilized for containers screening in the field, identification of defective pills hold high significance in the fields of health, security and protection. However, such techniques are constrained by costly instrumentation, offline analysis and complexities identified with transducer holder physical coupling. So a simple, non-destructive and amazingly cost effective technique in view of acoustic resonance has been formulated here for quick data acquisition and analysis of acoustic signature of liquids for their constituent identification and classification. In this system, there are two ceramic coated piezoelectric transducers attached at both ends of V-shaped glass, one is act as transmitter and another as receiver. The transmitter generates sound with the help of white noise generator. The pick up transducer on another end of the V-shaped glass rod detects the transmitted signal. The recording is being done with arduino interfaced to computer. The FFTs of recorded signals are being analyzed and the resulted resonant frequency observed for water, water+salt and water+sugar are 4.8 KHz, 6.8 KHz and 3.2 KHz respectively. The different resonant frequency in case different sample is being observed which shows that the developed prototype model effectively classifying the materials.

2018-01-10
Kuo, J., Lal, A..  2017.  Wideband material detection for spoof resistance in GHz ultrasonic fingerprint sensing. 2017 IEEE International Ultrasonics Symposium (IUS). :1–1.
One of the primary motivations for using ultrasound reflectometry for fingerprint imaging is the promise of increased spoof resistance over conventional optical or capacitive sensing approaches due to the ability for ultrasound to determine the elastic impedance of the imaged material. A fake 3D printed plastic finger can therefore be easily distinguished from a real finger. However, ultrasonic sensors are still vulnerable to materials that are similar in impedance to tissue, such as water or rubber. Previously we demonstrated an ultrasonic fingerprint reader operating with 1.3GHz ultrasound based on pulse echo impedance imaging on the backside silicon interface. In this work, we utilize the large bandwidth of these sensors to differentiate between a finger and materials with similar impedances using the frequency response of elastic impedance obtained by transducer excitation with a wideband RF chirp signal. The reflected signal is a strong function of impedance mismatch and absorption [Hoople 2015].