Biblio
Physical-layer fingerprinting investigates how features extracted from radio signals can be used to uniquely identify devices. This paper proposes and analyses a novel methodology to fingerprint LoRa devices, which is inspired by recent advances in supervised machine learning and zero-shot image classification. Contrary to previous works, our methodology does not rely on localized and low-dimensional features, such as those extracted from the signal transient or preamble, but uses the entire signal. We have performed our experiments using 22 LoRa devices with 3 different chipsets. Our results show that identical chipsets can be distinguished with 59% to 99% accuracy per symbol, whereas chipsets from different vendors can be fingerprinted with 99% to 100% accuracy per symbol. The fingerprinting can be performed using only inexpensive commercial off-the-shelf software defined radios, and a low sample rate of 1 Msps. Finally, we release all datasets and code pertaining to these experiments to the public domain.