Visible to the public Biblio

Filters: Keyword is PHY layer  [Clear All Filters]
2019-01-16
Shi, T., Shi, W., Wang, C., Wang, Z..  2018.  Compressed Sensing based Intrusion Detection System for Hybrid Wireless Mesh Networks. 2018 International Conference on Computing, Networking and Communications (ICNC). :11–15.
As wireless mesh networks (WMNs) develop rapidly, security issue becomes increasingly important. Intrusion Detection System (IDS) is one of the crucial ways to detect attacks. However, IDS in wireless networks including WMNs brings high detection overhead, which degrades network performance. In this paper, we apply compressed sensing (CS) theory to IDS and propose a CS based IDS for hybrid WMNs. Since CS can reconstruct a sparse signal with compressive sampling, we process the detected data and construct sparse original signals. Through reconstruction algorithm, the compressive sampled data can be reconstructed and used for detecting intrusions, which reduces the detection overhead. We also propose Active State Metric (ASM) as an attack metric for recognizing attacks, which measures the activity in PHY layer and energy consumption of each node. Through intensive simulations, the results show that under 50% attack density, our proposed IDS can ensure 95% detection rate while reducing about 40% detection overhead on average.
2018-01-10
Robyns, Pieter, Marin, Eduard, Lamotte, Wim, Quax, Peter, Singelée, Dave, Preneel, Bart.  2017.  Physical-layer Fingerprinting of LoRa Devices Using Supervised and Zero-shot Learning. Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks. :58–63.

Physical-layer fingerprinting investigates how features extracted from radio signals can be used to uniquely identify devices. This paper proposes and analyses a novel methodology to fingerprint LoRa devices, which is inspired by recent advances in supervised machine learning and zero-shot image classification. Contrary to previous works, our methodology does not rely on localized and low-dimensional features, such as those extracted from the signal transient or preamble, but uses the entire signal. We have performed our experiments using 22 LoRa devices with 3 different chipsets. Our results show that identical chipsets can be distinguished with 59% to 99% accuracy per symbol, whereas chipsets from different vendors can be fingerprinted with 99% to 100% accuracy per symbol. The fingerprinting can be performed using only inexpensive commercial off-the-shelf software defined radios, and a low sample rate of 1 Msps. Finally, we release all datasets and code pertaining to these experiments to the public domain.