Visible to the public Biblio

Filters: Keyword is intellectual subsystem  [Clear All Filters]
2018-01-10
Meltsov, V. Y., Lesnikov, V. A., Dolzhenkova, M. L..  2017.  Intelligent system of knowledge control with the natural language user interface. 2017 International Conference "Quality Management,Transport and Information Security, Information Technologies" (IT QM IS). :671–675.
This electronic document is a “live” template and already defines the components of your paper [title, text, heads, etc.] in its style sheet. The paper considers the possibility and necessity of using in modern control and training systems with a natural language interface methods and mechanisms, characteristic for knowledge processing systems. This symbiosis assumes the introduction of specialized inference machines into the testing systems. For the effective operation of such an intelligent interpreter, it is necessary to “translate” the user's answers into one of the known forms of the knowledge representation, for example, into the expressions (rules) of the first-order predicate calculus. A lexical processor, performing morphological, syntactic and semantic analysis, solves this task. To simplify further work with the rules, the Skolem-transformation is used, which allows to get rid of quantifiers and to present semantic structures in the form of sequents (clauses, disjuncts). The basic principles of operation of the inference machine are described, which is the main component of the developed intellectual subsystem. To improve the performance of the machine, one of the fastest methods was chosen - a parallel method of deductive inference based on the division of clauses. The parallelism inherent in the method, and the use of the dataflow architecture, allow parallel computations in the output machine to be implemented without additional effort on the part of the programmer. All this makes it possible to reduce the time for comparing the sequences stored in the knowledge base by several times as compared to traditional inference mechanisms that implement various versions of the principle of resolutions. Formulas and features of the technique of numerical estimation of the user's answers are given. In general, the development of the human-computer dialogue capabilities in test systems- through the development of a specialized module for processing knowledge, will increase the intelligence of such systems and allow us to directly consider the semantics of sentences, more accurately determine the relevance of the user's response to standard knowledge and, ultimately, get rid of the skeptical attitude of many managers to machine testing systems.