Biblio
In parallel with the increasing growth of the Internet and computer networks, the number of malwares has been increasing every day. Today, one of the newest attacks and the biggest threats in cybersecurity is ransomware. The effectiveness of applying machine learning techniques for malware detection has been explored in much scientific research, however, there is few studies focused on machine learning-based ransomware detection. In this paper, the effectiveness of ransomware detection using machine learning methods applied to CICAndMal2017 dataset is examined in two experiments. First, the classifiers are trained on a single dataset containing different types of ransomware. Second, different classifiers are trained on datasets of 10 ransomware families distinctly. Our findings imply that in both experiments random forest outperforms other tested classifiers and the performance of the classifiers are not changed significantly when they are trained on each family distinctly. Therefore, the random forest classification method is very effective in ransomware detection.
In this paper we present results of a research on automatic extremist text detection. For this purpose an experimental dataset in the Russian language was created. According to the Russian legislation we cannot make it publicly available. We compared various classification methods (multinomial naive Bayes, logistic regression, linear SVM, random forest, and gradient boosting) and evaluated the contribution of differentiating features (lexical, semantic and psycholinguistic) to classification quality. The results of experiments show that psycholinguistic and semantic features are promising for extremist text detection.