Biblio
Today, maintaining the security of the web application is of great importance. Sites Intermediate Script (XSS) is a security flaw that can affect web applications. This error allows an attacker to add their own malicious code to HTML pages that are displayed to the user. Upon execution of the malicious code, the behavior of the system or website can be completely changed. The XSS security vulnerability is used by attackers to steal the resources of a web browser such as cookies, identity information, etc. by adding malicious Java Script code to the victim's web applications. Attackers can use this feature to force a malicious code worker into a Web browser of a user, since Web browsers support the execution of embedded commands on web pages to enable dynamic web pages. This work has been proposed as a technique to detect and prevent manipulation that may occur in web sites, and thus to prevent the attack of Site Intermediate Script (XSS) attacks. Ayrica has developed four different languages that detect XSS explanations with Asp.NET, PHP, PHP and Ruby languages, and the differences in the detection of XSS attacks in environments provided by different programming languages.
Nowadays, cyber attacks affect many institutions and individuals, and they result in a serious financial loss for them. Phishing Attack is one of the most common types of cyber attacks which is aimed at exploiting people's weaknesses to obtain confidential information about them. This type of cyber attack threats almost all internet users and institutions. To reduce the financial loss caused by this type of attacks, there is a need for awareness of the users as well as applications with the ability to detect them. In the last quarter of 2016, Turkey appears to be second behind China with an impact rate of approximately 43% in the Phishing Attack Analysis report between 45 countries. In this study, firstly, the characteristics of this type of attack are explained, and then a machine learning based system is proposed to detect them. In the proposed system, some features were extracted by using Natural Language Processing (NLP) techniques. The system was implemented by examining URLs used in Phishing Attacks before opening them with using some extracted features. Many tests have been applied to the created system, and it is seen that the best algorithm among the tested ones is the Random Forest algorithm with a success rate of 89.9%.