Biblio
In order to protect individuals' privacy, data have to be "well-sanitized" before sharing them, i.e. one has to remove any personal information before sharing data. However, it is not always clear when data shall be deemed well-sanitized. In this paper, we argue that the evaluation of sanitized data should be based on whether the data allows the inference of sensitive information that is specific to an individual, instead of being centered around the concept of re-identification. We propose a framework to evaluate the effectiveness of different sanitization techniques on a given dataset by measuring how much an individual's record from the sanitized dataset influences the inference of his/her own sensitive attribute. Our intent is not to accurately predict any sensitive attribute but rather to measure the impact of a single record on the inference of sensitive information. We demonstrate our approach by sanitizing two real datasets in different privacy models and evaluate/compare each sanitized dataset in our framework.
In the present time, there has been a huge increase in large data repositories by corporations, governments, and healthcare organizations. These repositories provide opportunities to design/improve decision-making systems by mining trends and patterns from the data set (that can provide credible information) to improve customer service (e.g., in healthcare). As a result, while data sharing is essential, it is an obligation to maintaining the privacy of the data donors as data custodians have legal and ethical responsibilities to secure confidentiality. This research proposes a 2-layer privacy preserving (2-LPP) data sanitization algorithm that satisfies ε-differential privacy for publishing sanitized data. The proposed algorithm also reduces the re-identification risk of the sanitized data. The proposed algorithm has been implemented, and tested with two different data sets. Compared to other existing works, the results obtained from the proposed algorithm show promising performance.