Visible to the public Biblio

Filters: Keyword is Synthetic Data  [Clear All Filters]
2020-06-12
Hughes, Ben, Bothe, Shruti, Farooq, Hasan, Imran, Ali.  2019.  Generative Adversarial Learning for Machine Learning empowered Self Organizing 5G Networks. 2019 International Conference on Computing, Networking and Communications (ICNC). :282—286.

In the wake of diversity of service requirements and increasing push for extreme efficiency, adaptability propelled by machine learning (ML) a.k.a self organizing networks (SON) is emerging as an inevitable design feature for future mobile 5G networks. The implementation of SON with ML as a foundation requires significant amounts of real labeled sample data for the networks to train on, with high correlation between the amount of sample data and the effectiveness of the SON algorithm. As generally real labeled data is scarce therefore it can become bottleneck for ML empowered SON for unleashing their true potential. In this work, we propose a method of expanding these sample data sets using Generative Adversarial Networks (GANs), which are based on two interconnected deep artificial neural networks. This method is an alternative to taking more data to expand the sample set, preferred in cases where taking more data is not simple, feasible, or efficient. We demonstrate how the method can generate large amounts of realistic synthetic data, utilizing the GAN's ability of generation and discrimination, able to be easily added to the sample set. This method is, as an example, implemented with Call Data Records (CDRs) containing the start hour of a call and the duration of the call, in minutes taken from a real mobile operator. Results show that the method can be used with a relatively small sample set and little information about the statistics of the true CDRs and still make accurate synthetic ones.

2018-05-24
Soria-Comas, Jordi, Domingo-Ferrer, Josep.  2017.  A Non-Parametric Model for Accurate and Provably Private Synthetic Data Sets. Proceedings of the 12th International Conference on Availability, Reliability and Security. :3:1–3:10.

Generating synthetic data is a well-known option to limit disclosure risk in sensitive data releases. The usual approach is to build a model for the population and then generate a synthetic data set solely based on the model. We argue that building an accurate population model is difficult and we propose instead to approximate the original data as closely as privacy constraints permit. To enforce an ex ante privacy level when generating synthetic data, we introduce a new privacy model called $ε$ synthetic privacy. Then, we describe a synthetic data generation method that satisfies $ε$-synthetic privacy. Finally, we evaluate the utility of the synthetic data generated with our method.

2018-03-19
Ditzler, G., Prater, A..  2017.  Fine Tuning Lasso in an Adversarial Environment against Gradient Attacks. 2017 IEEE Symposium Series on Computational Intelligence (SSCI). :1–7.

Machine learning and data mining algorithms typically assume that the training and testing data are sampled from the same fixed probability distribution; however, this violation is often violated in practice. The field of domain adaptation addresses the situation where this assumption of a fixed probability between the two domains is violated; however, the difference between the two domains (training/source and testing/target) may not be known a priori. There has been a recent thrust in addressing the problem of learning in the presence of an adversary, which we formulate as a problem of domain adaption to build a more robust classifier. This is because the overall security of classifiers and their preprocessing stages have been called into question with the recent findings of adversaries in a learning setting. Adversarial training (and testing) data pose a serious threat to scenarios where an attacker has the opportunity to ``poison'' the training or ``evade'' on the testing data set(s) in order to achieve something that is not in the best interest of the classifier. Recent work has begun to show the impact of adversarial data on several classifiers; however, the impact of the adversary on aspects related to preprocessing of data (i.e., dimensionality reduction or feature selection) has widely been ignored in the revamp of adversarial learning research. Furthermore, variable selection, which is a vital component to any data analysis, has been shown to be particularly susceptible under an attacker that has knowledge of the task. In this work, we explore avenues for learning resilient classification models in the adversarial learning setting by considering the effects of adversarial data and how to mitigate its effects through optimization. Our model forms a single convex optimization problem that uses the labeled training data from the source domain and known- weaknesses of the model for an adversarial component. We benchmark the proposed approach on synthetic data and show the trade-off between classification accuracy and skew-insensitive statistics.

2018-01-10
Ping, Haoyue, Stoyanovich, Julia, Howe, Bill.  2017.  DataSynthesizer: Privacy-Preserving Synthetic Datasets. Proceedings of the 29th International Conference on Scientific and Statistical Database Management. :42:1–42:5.
To facilitate collaboration over sensitive data, we present DataSynthesizer, a tool that takes a sensitive dataset as input and generates a structurally and statistically similar synthetic dataset with strong privacy guarantees. The data owners need not release their data, while potential collaborators can begin developing models and methods with some confidence that their results will work similarly on the real dataset. The distinguishing feature of DataSynthesizer is its usability — the data owner does not have to specify any parameters to start generating and sharing data safely and effectively. DataSynthesizer consists of three high-level modules — DataDescriber, DataGenerator and ModelInspector. The first, DataDescriber, investigates the data types, correlations and distributions of the attributes in the private dataset, and produces a data summary, adding noise to the distributions to preserve privacy. DataGenerator samples from the summary computed by DataDescriber and outputs synthetic data. ModelInspector shows an intuitive description of the data summary that was computed by DataDescriber, allowing the data owner to evaluate the accuracy of the summarization process and adjust any parameters, if desired. We describe DataSynthesizer and illustrate its use in an urban science context, where sharing sensitive, legally encumbered data between agencies and with outside collaborators is reported as the primary obstacle to data-driven governance. The code implementing all parts of this work is publicly available at https://github.com/DataResponsibly/DataSynthesizer.