Visible to the public Biblio

Filters: Keyword is self-learning  [Clear All Filters]
2020-01-27
Hsu, Hsiao-Tzu, Jong, Gwo-Jia, Chen, Jhih-Hao, Jhe, Ciou-Guo.  2019.  Improve Iot Security System Of Smart-Home By Using Support Vector Machine. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS). :674–677.
The traditional smart-home is designed to integrate the concept of the Internet of Things(IoT) into our home environment, and to improve the comfort of home. It connects electrical products and household goods to the network, and then monitors and controls them. However, this paper takes home safety as the main axis of research. It combines the past concept of smart-home and technology of machine learning to improve the whole system of smart-home. Through systematic self-learning, it automatically figure out whether it is normal or abnormal, and reports to remind building occupants safety. At the same time, it saves the cost of human resources preservation. This paper make a set of rules table as the basic criteria first, and then classify a part of data which collected by traditional Internet of Things of smart-home by manual way, which includes the opening and closing of doors and windows, the starting and stopping of motors, the connection and interruption of the system, and the time of sending each data to label, then use Support Vector Machine(SVM) algorithm to classify and build models, and then train it. The executed model is applied to our smart-home system. Finally, we verify the Accuracy of anomaly reporting in our system.
2020-01-21
Taib, Abidah Mat, Othman, Nor Arzami, Hamid, Ros Syamsul, Halim, Iman Hazwam Abd.  2019.  A Learning Kit on IPv6 Deployment and Its Security Challenges for Neophytes. 2019 21st International Conference on Advanced Communication Technology (ICACT). :419–424.
Understanding the IP address depletion and the importance of handling security issues in IPv6 deployment can make IT personnel becomes more functional and helpful to the organization. It also applied to the management people who are responsible for approving the budget or organization policy related to network security. Unfortunately, new employees or fresh graduates may not really understand the challenge related to IPv6 deployment. In order to be equipped with appropriate knowledge and skills, these people may require a few weeks of attending workshops or training. Thus, of course involving some implementation cost as well as sacrificing allocated working hours. As an alternative to save cost and to help new IT personnel become quickly educated and familiar with IPv6 deployment issues, this paper presented a learning kit that has been designed to include self-learning features that can help neophytes to learn about IPv6 at their own pace. The kit contains some compact notes, brief security model and framework as well as a guided module with supporting quizzes to maintain a better understanding of the topics. Since IPv6 is still in the early phase of implementation in most of developing countries, this kit can be an additional assisting tool to accelerate the deployment of IPv6 environment in any organization. The kit also can be used by teachers and trainers as a supporting tool in the classroom. The pre-alpha testing has attracted some potential users and the findings proved their acceptance. The kit has prospective to be further enhanced and commercialized.
2019-09-04
Vanjari, M. S. P., Balsaraf, M. K. P..  2018.  Efficient Exploration of Algorithm in Scholarly Big Data Document. 2018 International Conference on Information , Communication, Engineering and Technology (ICICET). :1–5.
Algorithms are used to develop, analyzing, and applying in the computer field and used for developing new application. It is used for finding solutions to any problems in different condition. It transforms the problems into algorithmic ones on which standard algorithms are applied. Day by day Scholarly Digital documents are increasing. AlgorithmSeer is a search engine used for searching algorithms. The main aim of it provides a large algorithm database. It is used to automatically encountering and take these algorithms in this big collection of documents that enable algorithm indexing, searching, discovery, and analysis. An original set to identify and pull out algorithm representations in a big collection of scholarly documents is proposed, of scale able techniques used by AlgorithmSeer. Along with this, particularly important and relevant textual content can be accessed the platform and highlight portions by anyone with different levels of knowledge. In support of lectures and self-learning, the highlighted documents can be shared with others. But different levels of learners cannot use the highlighted part of text at same understanding level. The problem of guessing new highlights of partially highlighted documents can be solved by us.
2018-04-04
Nawaratne, R., Bandaragoda, T., Adikari, A., Alahakoon, D., Silva, D. De, Yu, X..  2017.  Incremental knowledge acquisition and self-learning for autonomous video surveillance. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :4790–4795.

The world is witnessing a remarkable increase in the usage of video surveillance systems. Besides fulfilling an imperative security and safety purpose, it also contributes towards operations monitoring, hazard detection and facility management in industry/smart factory settings. Most existing surveillance techniques use hand-crafted features analyzed using standard machine learning pipelines for action recognition and event detection. A key shortcoming of such techniques is the inability to learn from unlabeled video streams. The entire video stream is unlabeled when the requirement is to detect irregular, unforeseen and abnormal behaviors, anomalies. Recent developments in intelligent high-level video analysis have been successful in identifying individual elements in a video frame. However, the detection of anomalies in an entire video feed requires incremental and unsupervised machine learning. This paper presents a novel approach that incorporates high-level video analysis outcomes with incremental knowledge acquisition and self-learning for autonomous video surveillance. The proposed approach is capable of detecting changes that occur over time and separating irregularities from re-occurrences, without the prerequisite of a labeled dataset. We demonstrate the proposed approach using a benchmark video dataset and the results confirm its validity and usability for autonomous video surveillance.

2018-01-16
Rukavitsyn, A., Borisenko, K., Shorov, A..  2017.  Self-learning method for DDoS detection model in cloud computing. 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :544–547.

Cloud Computing has many significant benefits like the provision of computing resources and virtual networks on demand. However, there is the problem to assure the security of these networks against Distributed Denial-of-Service (DDoS) attack. Over the past few decades, the development of protection method based on data mining has attracted many researchers because of its effectiveness and practical significance. Most commonly these detection methods use prelearned models or models based on rules. Because of this the proposed DDoS detection methods often failure in dynamically changing cloud virtual networks. In this paper, we purposed self-learning method allows to adapt a detection model to network changes. This is minimized the false detection and reduce the possibility to mark legitimate users as malicious and vice versa. The developed method consists of two steps: collecting data about the network traffic by Netflow protocol and relearning the detection model with the new data. During the data collection we separate the traffic on legitimate and malicious. The separated traffic is labeled and sent to the relearning pool. The detection model is relearned by a data from the pool of current traffic. The experiment results show that proposed method could increase efficiency of DDoS detection systems is using data mining.