Visible to the public Biblio

Filters: Keyword is virtualization technology  [Clear All Filters]
2017-03-07
Tunc, C., Hariri, S., Montero, F. D. L. P., Fargo, F., Satam, P..  2015.  CLaaS: Cybersecurity Lab as a Service – Design, Analysis, and Evaluation. 2015 International Conference on Cloud and Autonomic Computing. :224–227.

The explosive growth of IT infrastructures, cloud systems, and Internet of Things (IoT) have resulted in complex systems that are extremely difficult to secure and protect against cyberattacks that are growing exponentially in the complexity and also in the number. Overcoming the cybersecurity challenges require cybersecurity environments supporting the development of innovative cybersecurity algorithms and evaluation of the experiments. In this paper, we present the design, analysis, and evaluation of the Cybersecurity Lab as a Service (CLaaS) which offers virtual cybersecurity experiments as a cloud service that can be accessed from anywhere and from any device (desktop, laptop, tablet, smart mobile device, etc.) with Internet connectivity. We exploit cloud computing systems and virtualization technologies to provide isolated and virtual cybersecurity experiments for vulnerability exploitation, launching cyberattacks, how cyber resources and services can be hardened, etc. We also present our performance evaluation and effectiveness of CLaaS experiments used by students.

2015-05-05
Datta, E., Goyal, N..  2014.  Security attack mitigation framework for the cloud. Reliability and Maintainability Symposium (RAMS), 2014 Annual. :1-6.

Cloud computing brings in a lot of advantages for enterprise IT infrastructure; virtualization technology, which is the backbone of cloud, provides easy consolidation of resources, reduction of cost, space and management efforts. However, security of critical and private data is a major concern which still keeps back a lot of customers from switching over from their traditional in-house IT infrastructure to a cloud service. Existence of techniques to physically locate a virtual machine in the cloud, proliferation of software vulnerability exploits and cross-channel attacks in-between virtual machines, all of these together increases the risk of business data leaks and privacy losses. This work proposes a framework to mitigate such risks and engineer customer trust towards enterprise cloud computing. Everyday new vulnerabilities are being discovered even in well-engineered software products and the hacking techniques are getting sophisticated over time. In this scenario, absolute guarantee of security in enterprise wide information processing system seems a remote possibility; software systems in the cloud are vulnerable to security attacks. Practical solution for the security problems lies in well-engineered attack mitigation plan. At the positive side, cloud computing has a collective infrastructure which can be effectively used to mitigate the attacks if an appropriate defense framework is in place. We propose such an attack mitigation framework for the cloud. Software vulnerabilities in the cloud have different severities and different impacts on the security parameters (confidentiality, integrity, and availability). By using Markov model, we continuously monitor and quantify the risk of compromise in different security parameters (e.g.: change in the potential to compromise the data confidentiality). Whenever, there is a significant change in risk, our framework would facilitate the tenants to calculate the Mean Time to Security Failure (MTTSF) cloud and allow them to adopt a dynamic mitigation plan. This framework is an add-on security layer in the cloud resource manager and it could improve the customer trust on enterprise cloud solutions.

2015-04-30
Nikolai, J., Yong Wang.  2014.  Hypervisor-based cloud intrusion detection system. Computing, Networking and Communications (ICNC), 2014 International Conference on. :989-993.

Shared resources are an essential part of cloud computing. Virtualization and multi-tenancy provide a number of advantages for increasing resource utilization and for providing on demand elasticity. However, these cloud features also raise many security concerns related to cloud computing resources. In this paper, we propose an architecture and approach for leveraging the virtualization technology at the core of cloud computing to perform intrusion detection security using hypervisor performance metrics. Through the use of virtual machine performance metrics gathered from hypervisors, such as packets transmitted/received, block device read/write requests, and CPU utilization, we demonstrate and verify that suspicious activities can be profiled without detailed knowledge of the operating system running within the virtual machines. The proposed hypervisor-based cloud intrusion detection system does not require additional software installed in virtual machines and has many advantages compared to host-based and network based intrusion detection systems which can complement these traditional approaches to intrusion detection.