Biblio
The rapid growth of Android malware has posed severe security threats to smartphone users. On the basis of the familial trait of Android malware observed by previous work, the familial analysis is a promising way to help analysts better focus on the commonalities of malware samples within the same families, thus reducing the analytical workload and accelerating malware analysis. The majority of existing approaches rely on supervised learning and face three main challenges, i.e., low accuracy, low efficiency, and the lack of labeled dataset. To address these challenges, we first construct a fine-grained behavior model by abstracting the program semantics into a set of subgraphs. Then, we propose SRA, a novel feature that depicts the similarity relationships between the Structural Roles of sensitive API call nodes in subgraphs. An SRA is obtained based on graph embedding techniques and represented as a vector, thus we can effectively reduce the high complexity of graph matching. After that, instead of training a classifier with labeled samples, we construct malware link network based on SRAs and apply community detection algorithms on it to group the unlabeled samples into groups. We implement these ideas in a system called GefDroid that performs Graph embedding based familial analysis of AnDroid malware using unsupervised learning. Moreover, we conduct extensive experiments to evaluate GefDroid on three datasets with ground truth. The results show that GefDroid can achieve high agreements (0.707-0.883 in term of NMI) between the clustering results and the ground truth. Furthermore, GefDroid requires only linear run-time overhead and takes around 8.6s to analyze a sample on average, which is considerably faster than the previous work.
Vehicular Adhoc Network (VANET), a specialized form of MANET in which safety is the major concern as critical information related to driver's safety and assistance need to be disseminated between the vehicle nodes. The security of the nodes can be increased, if the network availability is increased. The availability of the network is decreased, if there is Denial of Service Attacks (DoS) in the network. In this paper, a packet detection algorithm for the prevention of DoS attacks is proposed. This algorithm will be able to detect the multiple malicious nodes in the network which are sending irrelevant packets to jam the network and that will eventually stop the network to send the safety messages. The proposed algorithm was simulated in NS-2 and the quantitative values of packet delivery ratio, packet loss ratio, network throughput proves that the proposed algorithm enhance the security of the network by detecting the DoS attack well in time.
Security policy is widely used in network management systems to ensure network security. It is necessary to detect and resolve conflicts in security policies. This paper analyzes the shortcomings of existing security policy conflict detection methods and proposes a B+ tree-based security policy conflict detection method. First, the security policy is dimensioned to make each attribute corresponds to one dimension. Then, a layer of B+ tree index is constructed at each dimension level. Each rule will be uniquely mapped by multiple layers of nested indexes. This method can greatly improve the efficiency of conflict detection. The experimental results show that the method has very stable performance which can effectively prevent conflicts, the type of policy conflict can be detected quickly and accurately.
Software-defined wireless sensor cognitive radio network is one of the emerging technologies which is simple, agile, and flexible. The sensor network comprises of a sink node with high processing power. The sensed data is transferred to the sink node in a hop-by-hop basis by sensor nodes. The network is programmable, automated, agile, and flexible. The sensor nodes are equipped with cognitive radios, which sense available spectrum bands and transmit sensed data on available bands, which improves spectrum utilization. Unfortunately, the Software-defined wireless sensor cognitive radio network is prone to security issues. The sinkhole attack is the most common attack which can also be used to launch other attacks. We propose and evaluate the performance of Hop Count-Based Sinkhole Attack detection Algorithm (HCOBASAA) using probability of detection, probability of false negative, and probability of false positive as the performance metrics. On average HCOBASAA managed to yield 100%, 75%, and 70% probability of detection.
Information security has become a growing concern. Computer covert channel which is regarded as an important area of information security research gets more attention. In order to detect these covert channels, a variety of detection algorithms are proposed in the course of the research. The algorithms of machine learning type show better results in these detection algorithms. However, the common machine learning algorithms have many problems in the testing process and have great limitations. Based on the deep learning algorithm, this paper proposes a new idea of network covert channel detection and forms a new detection model. On the one hand, this algorithmic model can detect more complex covert channels and, on the other hand, greatly improve the accuracy of detection due to the use of a new deep learning model. By optimizing this test model, we can get better results on the evaluation index.
While the rapid adaptation of mobile devices changes our daily life more conveniently, the threat derived from malware is also increased. There are lots of research to detect malware to protect mobile devices, but most of them adopt only signature-based malware detection method that can be easily bypassed by polymorphic and metamorphic malware. To detect malware and its variants, it is essential to adopt behavior-based detection for efficient malware classification. This paper presents a system that classifies malware by using common behavioral characteristics along with malware families. We measure the similarity between malware families with carefully chosen features commonly appeared in the same family. With the proposed similarity measure, we can classify malware by malware's attack behavior pattern and tactical characteristics. Also, we apply community detection algorithm to increase the modularity within each malware family network aggregation. To maintain high classification accuracy, we propose a process to derive the optimal weights of the selected features in the proposed similarity measure. During this process, we find out which features are significant for representing the similarity between malware samples. Finally, we provide an intuitive graph visualization of malware samples which is helpful to understand the distribution and likeness of the malware networks. In the experiment, the proposed system achieved 97% accuracy for malware classification and 95% accuracy for prediction by K-fold cross-validation using the real malware dataset.
In big data era, machine learning is one of fundamental techniques in intrusion detection systems (IDSs). Poisoning attack, which is one of the most recognized security threats towards machine learning- based IDSs, injects some adversarial samples into the training phase, inducing data drifting of training data and a significant performance decrease of target IDSs over testing data. In this paper, we adopt the Edge Pattern Detection (EPD) algorithm to design a novel poisoning method that attack against several machine learning algorithms used in IDSs. Specifically, we propose a boundary pattern detection algorithm to efficiently generate the points that are near to abnormal data but considered to be normal ones by current classifiers. Then, we introduce a Batch-EPD Boundary Pattern (BEBP) detection algorithm to overcome the limitation of the number of edge pattern points generated by EPD and to obtain more useful adversarial samples. Based on BEBP, we further present a moderate but effective poisoning method called chronic poisoning attack. Extensive experiments on synthetic and three real network data sets demonstrate the performance of the proposed poisoning method against several well-known machine learning algorithms and a practical intrusion detection method named FMIFS-LSSVM-IDS.
Detecting fake accounts (sybils) in online social networks (OSNs) is vital to protect OSN operators and their users from various malicious activities. Typical graph-based sybil detection (a mainstream methodology) assumes that sybils can make friends with only a limited (or small) number of honest users. However, recent evidences showed that this assumption does not hold in real-world OSNs, leading to low detection accuracy. To address this challenge, we explore users' activities to assist sybil detection. The intuition is that honest users are much more selective in choosing who to interact with than to befriend with. We first develop the social and activity network (SAN), a two-layer hyper-graph that unifies users' friendships and their activities, to fully utilize users' activities. We also propose a more practical sybil attack model, where sybils can launch both friendship attacks and activity attacks. We then design Sybil SAN to detect sybils via coupling three random walk-based algorithms on the SAN, and prove the convergence of Sybil SAN. We develop an efficient iterative algorithm to compute the detection metric for Sybil SAN, and derive the number of rounds needed to guarantee the convergence. We use "matrix perturbation theory" to bound the detection error when sybils launch many friendship attacks and activity attacks. Extensive experiments on both synthetic and real-world datasets show that Sybil SAN is highly robust against sybil attacks, and can detect sybils accurately under practical scenarios, where current state-of-art sybil defenses have low accuracy.
Botnets have long been used for malicious purposes with huge economic costs to the society. With the proliferation of cheap but non-secure Internet-of-Things (IoT) devices generating large amounts of data, the potential for damage from botnets has increased manifold. There are several approaches to detect bots or botnets, though many traditional techniques are becoming less effective as botnets with centralized command & control structure are being replaced by peer-to-peer (P2P) botnets which are harder to detect. Several algorithms have been proposed in literature that use graph analysis or machine learning techniques to detect the overlay structure of P2P networks in communication graphs. Many of these algorithms however, depend on the availability of a universal communication graph or a communication graph aggregated from several ISPs, which is not likely to be available in reality. In real world deployments, significant gaps in communication graphs are expected and any solution proposed should be able to work with partial information. In this paper, we analyze the effectiveness of some community detection algorithms in detecting P2P botnets, especially with partial information. We show that the approach can work with only about half of the nodes reporting their communication graphs, with only small increase in detection errors.
Many aspects of our daily lives now rely on computers, including communications, transportation, government, finance, medicine, and education. However, with increased dependence comes increased vulnerability. Therefore recognizing attacks quickly is critical. In this paper, we introduce a new anomaly detection algorithm based on persistent homology, a tool which computes summary statistics of a manifold. The idea is to represent a cyber network with a dynamic point cloud and compare the statistics over time. The robustness of persistent homology makes for a very strong comparison invariant.
In this paper a joint algorithm was designed to detect a variety of unauthorized access risks in multilevel hybrid cloud. First of all, the access history is recorded among different virtual machines in multilevel hybrid cloud using the global flow diagram. Then, the global flow graph is taken as auxiliary decision-making basis to design legitimacy detection algorithm based data access and is represented by formal representation, Finally the implement process was specified, and the algorithm can effectively detect operating against regulations such as simple unauthorized level across, beyond indirect unauthorized and other irregularities.