Biblio
It can get the user's privacy and home energy use information by analyzing the user's electrical load information in smart grid, and this is an area of concern. A rechargeable battery may be used in the home network to protect user's privacy. In this paper, the battery can neither charge nor discharge, and the power of battery is adjustable, at the same time, we model the real user's electrical load information and the battery power information and the recorded electrical power of smart meters which are processed with discrete way. Then we put forward a heuristic algorithm which can make the rate of information leakage less than existing solutions. We use statistical methods to protect user's privacy, the theoretical analysis and the examples show that our solution makes the scene design more reasonable and is more effective than existing solutions to avoid the leakage of the privacy.
Many attacks target vulnerabilities of home IoT devices, such as bugs in outdated software and weak passwords. The home network is at a vantage point for deploying security appliances to deal with such IoT attacks. We propose a comprehensive home network defense, Pot2DPI, and use it to raise an attacker's uncertainty about devices and enable the home network to monitor traffic, detect anomalies, and filter malicious packets. The security offered by Pot2DPI comes from a synthesis of practical techniques: honeypot, deep packet inspection (DPI), and a realization of moving target defense (MTD) in port forwarding. In particular, Pot2DPI has a chain of honeypot and DPI that collects suspicious packet traces, acquires attack signatures, and installs filtering rules at a home router timely. Meanwhile, Pot2DPI shuffles the mapping of ports between the router and the devices connected to it, making a targeted attack difficult and defense more effective. Pot2DPI is our first step towards securing a smart home.