Biblio
Updating the structure of attack graph templates based on real-time alerts from Intrusion Detection Systems (IDS), in an Industrial Control System (ICS) network, is currently done manually by security experts. But, a highly-connected smart power systems, that can inadvertently expose numerous vulnerabilities to intruders for targeting grid resilience, needs automatic fast updates on learning attack graph structures, instead of manual intervention, to enable fast isolation of compromised network to secure the grid. Hence, in this work, we develop a technique to first construct a prior Bayesian Attack Graph (BAG) based on a predefined threat model and a synthetic communication network for a cyber-physical power system. Further, we evaluate a few score-based and constraint-based structural learning algorithms to update the BAG structure based on real-time alerts, based on scalability, data dependency, time complexity and accuracy criteria.
We study the problem of allocating limited security countermeasures to protect network data from cyber-attacks, for scenarios modeled by Bayesian attack graphs. We consider multi-stage interactions between a network administrator and cybercriminals, formulated as a security game. This formulation is capable of representing security environments with significant dynamics and uncertainty, and very large strategy spaces. For the game model, we propose parameterized heuristic strategies for both players. Our heuristics exploit the topological structure of the attack graphs and employ different sampling methodologies to overcome the computational complexity in determining players' actions. Given the complexity of the game, we employ a simulation-based methodology, and perform empirical game analysis over an enumerated set of these heuristic strategies. Finally, we conduct experiments based on a variety of game settings to demonstrate the advantages of our heuristics in obtaining effective defense strategies which are robust to the uncertainty of the security environment.