Visible to the public Biblio

Filters: Keyword is network compression  [Clear All Filters]
2022-02-24
Wang, Haoyu.  2021.  Compression Optimization For Automatic Verification of Network Configuration. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :1409–1412.
In the era of big data and artificial intelligence, computer networks have become an important infrastructure, and the Internet has become ubiquitous. The most basic property of computer networks is reachability. The needs of the modern Internet mainly include cost, performance, reliability, and security. However, even for experienced network engineers, it is very difficult to manually conFigure the network to meet the needs of the modern large-scale Internet. The engineers often make mistakes, which can cause network paralysis, resulting in incalculable losses. Due to the development of automatic reasoning technology, automatic verification of network configuration is used to avoid mistakes. Network verification is at least an NP-C problem, so it is necessary to compress the network to reduce the network scale, thereby reducing the network verification time. This paper proposes a new model of network modeling, which is more suitable for the verification of network configuration on common protocols (such as RIP, BGP). On the basis of the existing compression method, two compression rules are added to compress the modeled network, reducing network verification time and conducting network reachability verification experiments on common networks. The experimental results are slightly better than the current compression methods.
2018-01-16
Richardson, D. P., Lin, A. C., Pecarina, J. M..  2017.  Hosting distributed databases on internet of things-scale devices. 2017 IEEE Conference on Dependable and Secure Computing. :352–357.

The Internet of Things (IoT) era envisions billions of interconnected devices capable of providing new interactions between the physical and digital worlds, offering new range of content and services. At the fundamental level, IoT nodes are physical devices that exist in the real world, consisting of networking, sensor, and processing components. Some application examples include mobile and pervasive computing or sensor nets, and require distributed device deployment that feed information into databases for exploitation. While the data can be centralized, there are advantages, such as system resiliency and security to adopting a decentralized architecture that pushes the computation and storage to the network edge and onto IoT devices. However, these devices tend to be much more limited in computation power than traditional racked servers. This research explores using the Cassandra distributed database on IoT-representative device specifications. Experiments conducted on both virtual machines and Raspberry Pi's to simulate IoT devices, examined latency issues with network compression, processing workloads, and various memory and node configurations in laboratory settings. We demonstrate that distributed databases are feasible on Raspberry Pi's as IoT representative devices and show findings that may help in application design.