Visible to the public Biblio

Filters: Keyword is data concealment  [Clear All Filters]
2020-06-26
Rezaei, Aref, Farzinvash, Leili, Farzamnia, Ali.  2019.  A Novel Steganography Algorithm using Edge Detection and MPC Algorithm. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :49—54.

With the rapid development of the Internet, preserving the security of confidential data has become a challenging issue. An effective method to this end is to apply steganography techniques. In this paper, we propose an efficient steganography algorithm which applies edge detection and MPC algorithm for data concealment in digital images. The proposed edge detection scheme partitions the given image, namely cover image, into blocks. Next, it identifies the edge blocks based on the variance of their corner pixels. Embedding the confidential data in sharp edges causes less distortion in comparison to the smooth areas. To diminish the imposed distortion by data embedding in edge blocks, we employ LSB and MPC algorithms. In the proposed scheme, the blocks are split into some groups firstly. Next, a full tree is constructed per group using the LSBs of its pixels. This tree is converted into another full tree in some rounds. The resultant tree is used to modify the considered LSBs. After the accomplishment of the data embedding process, the final image, which is called stego image, is derived. According to the experimental results, the proposed algorithm improves PSNR with at least 5.4 compared to the previous schemes.

2018-01-16
Zouari, J., Hamdi, M., Kim, T. H..  2017.  A privacy-preserving homomorphic encryption scheme for the Internet of Things. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :1939–1944.

The Internet of Things is a disruptive paradigm based on the cooperation of a plethora of heterogeneous smart things to collect, transmit, and analyze data from the ambient environment. To this end, many monitored variables are combined by a data analysis module in order to implement efficient context-aware decision mechanisms. To ensure resource efficiency, aggregation is a long established solution, however it is applicable only in the case of one sensed variable. We extend the use of aggregation to the complex context of IoT by proposing a novel approach for secure cooperation of smart things while granting confidentiality and integrity. Traditional solutions for data concealment in resource constrained devices rely on hop-by-hop or end-to-end encryption, which are shown to be inefficient in our context. We use a more sophisticated scheme relying on homomorphic encryption which is not compromise resilient. We combine fully additive encryption with fully additive secret sharing to fulfill the required properties. Thorough security analysis and performance evaluation show a viable tradeoff between security and efficiency for our scheme.