Visible to the public Biblio

Filters: Keyword is association analysis  [Clear All Filters]
2018-04-02
Gao, Y., Luo, T., Li, J., Wang, C..  2017.  Research on K Anonymity Algorithm Based on Association Analysis of Data Utility. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :426–432.

More and more medical data are shared, which leads to disclosure of personal privacy information. Therefore, the construction of medical data privacy preserving publishing model is of great value: not only to make a non-correspondence between the released information and personal identity, but also to maintain the data utility after anonymity. However, there is an inherent contradiction between the anonymity and the data utility. In this paper, a Principal Component Analysis-Grey Relational Analysis (PCA-GRA) K anonymous algorithm is proposed to improve the data utility effectively under the premise of anonymity, in which the association between quasi-identifiers and the sensitive information is reckoned as a criterion to control the generalization hierarchy. Compared with the previous anonymity algorithms, results show that the proposed PCA-GRA K anonymous algorithm has achieved significant improvement in data utility from three aspects, namely information loss, feature maintenance and classification evaluation performance.

2018-01-16
Ugwuoke, C., Erkin, Z., Lagendijk, R. L..  2017.  Privacy-safe linkage analysis with homomorphic encryption. 2017 25th European Signal Processing Conference (EUSIPCO). :961–965.

Genetic data are important dataset utilised in genetic epidemiology to investigate biologically coded information within the human genome. Enormous research has been delved into in recent years in order to fully sequence and understand the genome. Personalised medicine, patient response to treatments and relationships between specific genes and certain characteristics such as phenotypes and diseases, are positive impacts of studying the genome, just to mention a few. The sensitivity, longevity and non-modifiable nature of genetic data make it even more interesting, consequently, the security and privacy for the storage and processing of genomic data beg for attention. A common activity carried out by geneticists is the association analysis between allele-allele, or even a genetic locus and a disease. We demonstrate the use of cryptographic techniques such as homomorphic encryption schemes and multiparty computations, how such analysis can be carried out in a privacy friendly manner. We compute a 3 × 3 contingency table, and then, genome analyses algorithms such as linkage disequilibrium (LD) measures, all on the encrypted domain. Our computation guarantees privacy of the genome data under our security settings, and provides up to 98.4% improvement, compared to an existing solution.