Visible to the public Biblio

Filters: Keyword is LBP  [Clear All Filters]
2021-07-08
Wahyudono, Bintang, Ogi, Dion.  2020.  Implementation of Two Factor Authentication based on RFID and Face Recognition using LBP Algorithm on Access Control System. 2020 International Conference on ICT for Smart Society (ICISS). CFP2013V-ART:1—6.
Studies on two-factor authentication based on RFID and face recognition have been carried out on a large scale. However, these studies didn't discuss the way to overcome the weaknesses of face recognition authentication in the access control systems. In this study, two authentication factors, RFID and face recognition, were implemented using the LBP (Local Binary Pattern) algorithm to overcome weaknesses of face recognition authentication in the access control system. Based on the results of performance testing, the access control system has 100% RFID authentication and 80% face recognition authentication. The average time for the RFID authentication process is 0.03 seconds, the face recognition process is 6.3885 seconds and the verification of the face recognition is 0.1970 seconds. The access control system can still work properly after three days without being switched off. The results of security testing showed that the capabilities spoofing detection has 100% overcome the photo attack.
2018-01-23
Srilatha, N., Mrali, G., Deepthi, M..  2017.  A framework to improve E-seva services through E-governance by using DNA cryptography. 2017 International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET). :1–4.

The proposed frame describes two objectives one is to issue certificates through online and second is provide three level security through DNA cryptography. DNA Cryptography means converting the data to the DNA sequence. DNA is a succession comprising of four letters in order; A, C, G and T. every letter set is identified with a nucleotide. DNA can be used for store data, transmit the data and also used for computation of the data. This paper implemented 3 levels of cryptography. The receiver will apply the decryption for extracting the readable from the unreadable format. This DNA cryptography provide the security more than the other cryptography, but it takes more time complexity for generating the encoding and decoding and it has the chances to hacking the data by the hacker. So in this paper we implement the fast three level DNA Cryptography for me seva services.