Visible to the public Biblio

Filters: Keyword is transmission process  [Clear All Filters]
2021-02-08
Fauzan, A., Sukarno, P., Wardana, A. A..  2020.  Overhead Analysis of the Use of Digital Signature in MQTT Protocol for Constrained Device in the Internet of Things System. 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE). :415–420.
This paper presents an overhead analysis of the use of digital signature mechanisms in the Message Queue Telemetry Transport (MQTT) protocol for three classes of constrained-device. Because the resources provided by constrained-devices are very limited, the purpose of this overhead analysis is to help find out the advantages and disadvantages of each class of constrained-devices after a security mechanism has been applied, namely by applying a digital signature mechanism. The objective of using this digital signature mechanism is for providing integrity, that if the payload sent and received in its destination is still original and not changed during the transmission process. The overhead analysis aspects performed are including analyzing decryption time, signature verification performance, message delivery time, memory and flash usage in the three classes of constrained-device. Based on the overhead analysis result, it can be seen that for decryption time and signature verification performance, the Class-2 device is the fastest one. For message delivery time, the smallest time needed for receiving the payload is Class-l device. For memory usage, the Class-2 device is providing the biggest available memory and flash.
2020-07-24
Navya, J M, Sanjay, H A, Deepika, KM.  2018.  Securing smart grid data under key exposure and revocation in cloud computing. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C). :1—4.
Smart grid systems data has been exposed to several threats and attacks from different perspectives and have resulted in several system failures. Obtaining security of data and key exposure and enhancing system ability in data collection and transmission process are challenging, on the grounds smart grid data is sensitive and enormous sum. In this paper we introduce smart grid data security method along with advanced Cipher text policy attribute based encryption (CP-ABE). Cloud supported IoT is widely used in smart grid systems. Smart IoT devices collect data and perform status management. Data obtained from the IOT devices will be divided into blocks and encrypted data will be stored in different cloud server with different encrypted keys even when one cloud server is assaulted and encrypted key is exposed data cannot be decrypted, thereby the transmission and encryption process are done in correspondingly. We protect access-tree structure information even after the data is shared to user by solving revocation problem in which cloud will inform data owner to revoke and update encryption key after user has downloaded the data, which preserves the data privacy from unauthorized users. The analysis of the system concludes that our proposed system can meet the security requirements in smart grid systems along with cloud-Internet of things.
2019-09-05
Liu, T., Wen, Y..  2018.  Studied on Application of Double Encryption Algorithm in Covert Channel Transmission. 2018 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :210-213.

In the process of mobile intelligent terminal for file transfer, ensure the safety of data transmission is significant. It is necessary to prevent the file from being eavesdropped and tampered during transmission. The method of using double encryption on covert channel is proposed in this paper based on the analysis of encryption algorithms and covert channel, which uses asymmetric encryption algorithm to encrypt the key of symmetric encryption, to form hidden information, and to carry out covert transmission through covert channels to enhance the security of mobile terminal data transmission. By simulating the above scenarios in intelligent mobile terminal, the confidentiality and concealment of important information are realized in the transmission process.

2018-01-23
Malathi, V., Balamurugan, B., Eshwar, S..  2017.  Achieving Privacy and Security Using QR Code by Means of Encryption Technique in ATM. 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM). :281–285.

Smart Card has complications with validation and transmission process. Therefore, by using peeping attack, the secret code was stolen and secret filming while entering Personal Identification Number at the ATM machine. We intend to develop an authentication system to banks that protects the asset of user's. The data of a user is to be ensured that secure and isolated from the data leakage and other attacks Therefore, we propose a system, where ATM machine will have a QR code in which the information's are encrypted corresponding to the ATM machine and a mobile application in the customer's mobile which will decrypt the encoded QR information and sends the information to the server and user's details are displayed in the ATM machine and transaction can be done. Now, the user securely enters information to transfer money without risk of peeping attack in Automated Teller Machine by just scanning the QR code at the ATM by mobile application. Here, both the encryption and decryption technique are carried out by using Triple DES Algorithm (Data Encryption Standard).