Visible to the public Biblio

Filters: Keyword is IWT  [Clear All Filters]
2023-06-22
Tiwari, Anurag, Srivastava, Vinay Kumar.  2022.  Integer Wavelet Transform and Dual Decomposition Based Image Watermarking scheme for Reliability of DICOM Medical Image. 2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). :1–6.
Image watermarking techniques provides security, reliability copyright protection for various multimedia contents. In this paper Integer Wavelet Transform Schur decomposition and Singular value decomposition (SVD) based image watermarking scheme is suggested for the integrity protection of dicom images. In the proposed technique 3-level Integer wavelet transform (IWT) is subjected into the Dicom ultrasound image of liver cover image and in HH sub-band Schur decomposition is applied. The upper triangular matrix obtained from Schur decomposition of HH sub-band is further processed with SVD to attain the singular values. The X-ray watermark image is pre-processed before embedding into cover image by applying 3-level IWT is applied into it and singular matrix of LL sub-band is embedded. The watermarked image is encrypted using Arnold chaotic encryption for its integrity protection. The performance of suggested scheme is tested under various attacks like filtering (median, average, Gaussian) checkmark (histogram equalization, rotation, horizontal and vertical flipping, contrast enhancement, gamma correction) and noise (Gaussian, speckle, Salt & Pepper Noise). The proposed technique provides strong robustness against various attacks and chaotic encryption provides integrity to watermarked image.
ISSN: 2687-7767
Tiwari, Anurag, Srivastava, Vinay Kumar.  2022.  A Chaotic Encrypted Reliable Image Watermarking Scheme based on Integer Wavelet Transform-Schur Transform and Singular Value Decomposition. 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :581–586.
In the present era of the internet, image watermarking schemes are used to provide content authentication, security and reliability of various multimedia contents. In this paper image watermarking scheme which utilizes the properties of Integer Wavelet Transform (IWT), Schur decomposition and Singular value decomposition (SVD) based is proposed. In the suggested method, the cover image is subjected to a 3-level Integer wavelet transform (IWT), and the HH3 subband is subjected to Schur decomposition. In order to retrieve its singular values, the upper triangular matrix from the HH3 subband’s Schur decomposition is then subjected to SVD. The watermark image is first encrypted using a chaotic map, followed by the application of a 3-level IWT to the encrypted watermark and the usage of singular values of the LL-subband to embed by manipulating the singular values of the processed cover image. The proposed scheme is tested under various attacks like filtering (median, average, Gaussian) checkmark (histogram equalization, rotation, horizontal and vertical flipping) and noise (Gaussian, Salt & Pepper Noise). The suggested scheme provides strong robustness against numerous attacks and chaotic encryption provides security to watermark.
2021-02-08
Karmakar, J., Mandal, M. K..  2020.  Chaos-based Image Encryption using Integer Wavelet Transform. 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN). :756–760.
Since the last few decades, several chaotic encryption techniques are reported by different researchers. Although the cryptanalysis of some techniques shows the feebler resistance of those algorithms against any weaker attackers. However, different hyper-chaotic based and DNA-coding based encrypting methods are introduced recently. Though, these methods are efficient against several attacks, but, increase complexity as well. On account of these drawbacks, we have proposed a novel technique of chaotic encryption of an image using the integer wavelet transform (IWT) and global bit scrambling (GBS). Here, the image is transformed and decomposed by IWT. Thereafter, a chaotic map is used in the encryption algorithm. A key-dependent bit scrambling (GBS) is introduced rather than pixel scrambling to make the encryption stronger. It enhances key dependency along with the increased resistance against intruder attacks. To check the fragility and dependability of the algorithm, a sufficient number of tests are done, which have given reassuring results. Some tests are done to check the similarity between the original and decrypted image to ensure the excellent outcome of the decryption algorithm. The outcomes of the proposed algorithm are compared with some recent works' outputs to demonstrate its eligibility.
2018-01-23
Dabas, N., Singh, R. P., Kher, G., Chaudhary, V..  2017.  A novel SVD and online sequential extreme learning machine based watermark method for copyright protection. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.

For the increasing use of internet, it is equally important to protect the intellectual property. And for the protection of copyright, a blind digital watermark algorithm with SVD and OSELM in the IWT domain has been proposed. During the embedding process, SVD has been applied to the coefficient blocks to get the singular values in the IWT domain. Singular values are modulated to embed the watermark in the host image. Online sequential extreme learning machine is trained to learn the relationship between the original coefficient and the corresponding watermarked version. During the extraction process, this trained OSELM is used to extract the embedded watermark logo blindly as no original host image is required during this process. The watermarked image is altered using various attacks like blurring, noise, sharpening, rotation and cropping. The experimental results show that the proposed watermarking scheme is robust against various attacks. The extracted watermark has very much similarity with the original watermark and works good to prove the ownership.