Visible to the public Biblio

Filters: Keyword is data integrity attacks  [Clear All Filters]
2020-11-02
Das, Abhishek, Touba, Nur A..  2019.  A Graph Theory Approach towards IJTAG Security via Controlled Scan Chain Isolation. 2019 IEEE 37th VLSI Test Symposium (VTS). :1—6.

The IEEE Std. 1687 (IJTAG) was designed to provide on-chip access to the various embedded instruments (e.g. built-in self test, sensors, etc.) in complex system-on-chip designs. IJTAG facilitates access to on-chip instruments from third party intellectual property providers with hidden test-data registers. Although access to on-chip instruments provides valuable data specifically for debug and diagnosis, it can potentially expose the design to untrusted sources and instruments that can sniff and possibly manipulate the data that is being shifted through the IJTAG network. This paper provides a comprehensive protection scheme against data sniffing and data integrity attacks by selectively isolating the data flowing through the IJTAG network. The proposed scheme is modeled as a graph coloring problem to optimize the number of isolation signals required to protect the design. It is shown that combining the proposed approach with other existing schemes can also bolster the security against unauthorized user access as well. The proposed countermeasure is shown to add minimal overhead in terms of area and power consumption.

2017-11-27
Pan, K., Teixeira, A. M. H., Cvetkovic, M., Palensky, P..  2016.  Combined data integrity and availability attacks on state estimation in cyber-physical power grids. 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm). :271–277.

This paper introduces combined data integrity and availability attacks to expand the attack scenarios against power system state estimation. The goal of the adversary, who uses the combined attack, is to perturb the state estimates while remaining hidden from the observer. We propose security metrics that quantify vulnerability of power grids to combined data attacks under single and multi-path routing communication models. In order to evaluate the proposed security metrics, we formulate them as mixed integer linear programming (MILP) problems. The relation between the security metrics of combined data attacks and pure data integrity attacks is analyzed, based on which we show that, when data availability and data integrity attacks have the same cost, the two metrics coincide. When data availability attacks have a lower cost than data integrity attacks, we show that a combined data attack could be executed with less attack resources compared to pure data integrity attacks. Furthermore, it is shown that combined data attacks would bypass integrity-focused mitigation schemes. These conclusions are supported by the results obtained on a power system model with and without a communication model with single or multi-path routing.

2015-04-30
Sridhar, S., Govindarasu, M..  2014.  Model-Based Attack Detection and Mitigation for Automatic Generation Control. Smart Grid, IEEE Transactions on. 5:580-591.

Cyber systems play a critical role in improving the efficiency and reliability of power system operation and ensuring the system remains within safe operating margins. An adversary can inflict severe damage to the underlying physical system by compromising the control and monitoring applications facilitated by the cyber layer. Protection of critical assets from electronic threats has traditionally been done through conventional cyber security measures that involve host-based and network-based security technologies. However, it has been recognized that highly skilled attacks can bypass these security mechanisms to disrupt the smooth operation of control systems. There is a growing need for cyber-attack-resilient control techniques that look beyond traditional cyber defense mechanisms to detect highly skilled attacks. In this paper, we make the following contributions. We first demonstrate the impact of data integrity attacks on Automatic Generation Control (AGC) on power system frequency and electricity market operation. We propose a general framework to the application of attack resilient control to power systems as a composition of smart attack detection and mitigation. Finally, we develop a model-based anomaly detection and attack mitigation algorithm for AGC. We evaluate the detection capability of the proposed anomaly detection algorithm through simulation studies. Our results show that the algorithm is capable of detecting scaling and ramp attacks with low false positive and negative rates. The proposed model-based mitigation algorithm is also efficient in maintaining system frequency within acceptable limits during the attack period.