Visible to the public Biblio

Filters: Keyword is automotive systems  [Clear All Filters]
2020-11-16
Feth, P., Adler, R., Schneider, D..  2018.  A Context-Aware, Confidence-Disclosing and Fail-Operational Dynamic Risk Assessment Architecture. 2018 14th European Dependable Computing Conference (EDCC). :190–194.
Future automotive systems will be highly automated and they will cooperate to optimize important system qualities and performance. Established safety assurance approaches and standards have been designed with manually controlled stand-alone systems in mind and are thus not fit to ensure safety of this next generation of systems. We argue that, given frequent dynamic changes and unknown contexts, systems need to be enabled to dynamically assess and manage their risks. In doing so, systems become resilient from a safety perspective, i.e. they are able to maintain a state of acceptable risk even when facing changes. This work presents a Dynamic Risk Assessment architecture that implements the concepts of context-awareness, confidence-disclosure and fail-operational. In particular, we demonstrate the utilization of these concepts for the calculation of automotive collision risk metrics, which are at the heart of our architecture.
2020-07-20
Lekidis, Alexios, Barosan, Ion.  2019.  Model-based simulation and threat analysis of in-vehicle networks. 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS). :1–8.
Automotive systems are currently undergoing a rapid evolution through the integration of the Internet of Things (IoT) and Software Defined Networking (SDN) technologies. The main focus of this evolution is to improve the driving experience, including automated controls, intelligent navigation and safety systems. Moreover, the extremely rapid pace that such technologies are brought into the vehicles, necessitates the presence of adequate testing of new features to avoid operational errors. Apart from testing though, IoT and SDN technologies also widen the threat landscape of cyber-security risks due to the amount of connectivity interfaces that are nowadays exposed in vehicles. In this paper we present a new method, based on OMNET++, for testing new in-vehicle features and assessing security risks through network simulation. The method is demonstrated through a case-study on a Toyota Prius, whose network data are analyzed for the detection of anomalies caused from security threats or operational errors.
2018-02-02
Rieke, R., Seidemann, M., Talla, E. K., Zelle, D., Seeger, B..  2017.  Behavior Analysis for Safety and Security in Automotive Systems. 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). :381–385.

The connection of automotive systems with other systems such as road-side units, other vehicles, and various servers in the Internet opens up new ways for attackers to remotely access safety relevant subsystems within connected cars. The security of connected cars and the whole vehicular ecosystem is thus of utmost importance for consumer trust and acceptance of this emerging technology. This paper describes an approach for on-board detection of unanticipated sequences of events in order to identify suspicious activities. The results show that this approach is fast enough for in-vehicle application at runtime. Several behavior models and synchronization strategies are analyzed in order to narrow down suspicious sequences of events to be sent in a privacy respecting way to a global security operations center for further in-depth analysis.

2018-01-23
Karam, R., Hoque, T., Ray, S., Tehranipoor, M., Bhunia, S..  2017.  MUTARCH: Architectural diversity for FPGA device and IP security. 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC). :611–616.
Field Programmable Gate Arrays (FPGAs) are being increasingly deployed in diverse applications including the emerging Internet of Things (IoT), biomedical, and automotive systems. However, security of the FPGA configuration file (i.e. bitstream), especially during in-field reconfiguration, as well as effective safeguards against unauthorized tampering and piracy during operation, are notably lacking. The current practice of bitstreram encryption is only available in high-end FPGAs, incurs unacceptably high overhead for area/energy-constrained devices, and is susceptible to side channel attacks. In this paper, we present a fundamentally different and novel approach to FPGA security that can protect against all major attacks on FPGA, namely, unauthorized in-field reprogramming, piracy of FPGA intellectual property (IP) blocks, and targeted malicious modification of the bitstream. Our approach employs the security through diversity principle to FPGA, which is often used in the software domain. We make each device architecturally different from the others using both physical (static) and logical (time-varying) configuration keys, ensuring that attackers cannot use a priori knowledge about one device to mount an attack on another. It therefore mitigates the economic motivation for attackers to reverse engineering the bitstream and IP. The approach is compatible with modern remote upgrade techniques, and requires only small modifications to existing FPGA tool flows, making it an attractive addition to the FPGA security suite. Our experimental results show that the proposed approach achieves provably high security against tampering and piracy with worst-case 14% latency overhead and 13% area overhead.