Visible to the public Biblio

Filters: Keyword is Automatic control  [Clear All Filters]
2021-06-30
Čečil, Roman, Šetka, Vlastimil, Tolar, David, Sikora, Axel.  2020.  RETIS – Real-Time Sensitive Wireless Communication Solution for Industrial Control Applications. 2020 IEEE 5th International Symposium on Smart and Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). :1—9.
Ultra-Reliable Low Latency Communications (URLLC) has been always a vital component of many industrial applications. The paper proposes a new wireless URLLC solution called RETIS, which is suitable for factory automation and fast process control applications, where low latency, low jitter, and high data exchange rates are mandatory. In the paper, we describe the communication protocol as well as the hardware structure of the network nodes for implementing the required functionality. Many techniques enabling fast, reliable wireless transmissions are used - short Transmission Time Interval (TTI), TimeDivision Multiple Access (TDMA), MIMO, optional duplicated data transfer, Forward Error Correction (FEC), ACK mechanism. Preliminary tests show that reliable endto-end latency down to 350 μs and packet exchange rate up to 4 kHz can be reached (using quadruple MIMO and standard IEEE 802.15.4 PHY at 250 kbit/s).
2020-09-04
Amoroso, E., Merritt, M..  1994.  Composing system integrity using I/O automata. Tenth Annual Computer Security Applications Conference. :34—43.
The I/O automata model of Lynch and Turtle (1987) is summarized and used to formalize several types of system integrity based on the control of transitions to invalid starts. Type-A integrity is exhibited by systems with no invalid initial states and that disallow transitions from valid reachable to invalid states. Type-B integrity is exhibited by systems that disallow externally-controlled transitions from valid reachable to invalid states, Type-C integrity is exhibited by systems that allow locally-controlled or externally-controlled transitions from reachable to invalid states. Strict-B integrity is exhibited by systems that are Type-B but not Type-A. Strict-C integrity is exhibited by systems that are Type-C but not Type-B. Basic results on the closure properties that hold under composition of systems exhibiting these types of integrity are presented in I/O automata-theoretic terms. Specifically, Type-A, Type-B, and Type-C integrity are shown to be composable, whereas Strict-B and Strict-C integrity are shown to not be generally composable. The integrity definitions and compositional results are illustrated using the familiar vending machine example specified as an I/O automaton and composed with a customer environment. The implications of the integrity definitions and compositional results on practical system design are discussed and a research plan for future work is outlined.
2018-01-23
Zhmud, V., Dimitrov, L., Taichenachev, A..  2017.  Model study of automatic and automated control of hysteretic object. 2017 International Siberian Conference on Control and Communications (SIBCON). :1–5.

This paper presents the results of research and simulation of feature automated control of a hysteretic object and the difference between automated control and automatic control. The main feature of automatic control is in the fact that the control loop contains human being as a regulator with its limited response speed. The human reaction can be described as integrating link. The hysteretic object characteristic is switching from one state to another. This is followed by a transient process from one to another characteristic. For this reason, it is very difficult to keep the object in a desired state. Automatic operation ensures fast switching of the feedback signal that produces such a mode, which in many ways is similar to the sliding mode. In the sliding mode control signal abruptly switches from maximum to minimum and vice versa. The average value provides the necessary action to the object. Theoretical analysis and simulation show that the use of the maximum value of the control signal is not required. It is sufficient that the switching oscillation amplitude is such that the output signal varies with the movement of the object along both branches with hysteretic characteristics in the fastest cycle. The average output value in this case corresponds to the prescribed value of the control task. With automated control, the human response can be approximately modeled by integrating regulator. In this case the amplitude fluctuation could be excessively high and the frequency could be excessively low. The simulation showed that creating an artificial additional fluctuation in the control signal makes possible to provide a reduction in the amplitude and the resulting increase in the frequency of oscillation near to the prescribed value. This should be evaluated as a way to improve the quality of automated control with the helps of human being. The paper presents some practical examples of the examined method.