Biblio
Recognising user's risky behaviours in real-time is an important element of providing appropriate solutions and recommending suitable actions for responding to cybersecurity threats. Employing user modelling and machine learning can make this process automated by requires high-performance intelligent agent to create the user security profile. User profiling is the process of producing a profile of the user from historical information and past details. This research tries to identify the monitoring factors and suggests a novel observation solution to create high-performance sensors to generate the user security profile for a home user concerning the user's privacy. This observer agent helps to create a decision-making model that influences the user's decision following real-time threats or risky behaviours.
Ever-driven by technological innovation, the Internet of Things (IoT) is continuing its exceptional evolution and growth into the common consumer space. In the wake of these developments, this paper proposes a framework for an IoT home security system that is secure, expandable, and accessible. Congruent with the ideals of the IoT, we are proposing a system utilizing an ultra-low-power wireless sensor network which would interface with a central hub via Bluetooth 4, commonly referred to as Bluetooth Low Energy (BLE), to monitor the home. Additionally, the system would interface with an Amazon Echo to accept user voice commands. The aforementioned central hub would also act as a web server and host an internet accessible configuration page from which users could monitor and customize their system. An internet-connected system would carry the capability to notify the users of system alarms via SMS or email. Finally, this proof of concept is intended to demonstrate expandability into other areas of home automation or building monitoring functions in general.
Recently, the home healthcare system has emerged as one of the most useful technology for e-healthcare. Contrary to classical recording methods of patient's medical data, which are, based on paper documents, nowadays all this sensitive data can be managed and forwarded through digital systems. These make possible for both patients and healthcare workers to access medical data or receive remote medical treatment using wireless interfaces whenever and wherever. However, simplifying access to these sensitive and private data can directly put patient's health and life in danger. In this paper, we propose a secure and lightweight biometric-based remote patient authentication scheme using elliptic curve encryption through which two mobile healthcare system communication parties could authenticate each other in public mobile healthcare environments. The security and performance analysis demonstrate that our proposal achieves better security than other concurrent schemes, with lower storage, communication and computation costs.
In this proposed method, the traditional elevators are upgraded in such a way that any alarming situation in the elevator can be detected and then sent to a main center where further action can be taken accordingly. Different emergency situation can be handled by implementing the system. Smart elevator system works by installing different modules inside the elevator such as speed sensors which will detect speed variations occurring above or below a certain threshold of elevator speed. The smart elevator system installed within the elevator sends a message to the emergency response center and sends an automated call as well. The smart system also includes an emotion detection algorithm which will detect emotions of the individual based on their expression in the elevator. The smart system also has a whisper detection system as well to know if someone stuck inside the elevator is alive during any hazardous situation. A broadcast signal is used as a check in the elevator system to evaluate if every part of the system is in stable state. Proposed system can completely replace the current elevator systems and become part of smart homes.