Visible to the public Biblio

Filters: Keyword is signal detection theory  [Clear All Filters]
2021-11-08
Varshney, Kush R..  2020.  On Mismatched Detection and Safe, Trustworthy Machine Learning. 2020 54th Annual Conference on Information Sciences and Systems (CISS). :1–4.
Instilling trust in high-stakes applications of machine learning is becoming essential. Trust may be decomposed into four dimensions: basic accuracy, reliability, human interaction, and aligned purpose. The first two of these also constitute the properties of safe machine learning systems. The second dimension, reliability, is mainly concerned with being robust to epistemic uncertainty and model mismatch. It arises in the machine learning paradigms of distribution shift, data poisoning attacks, and algorithmic fairness. All of these problems can be abstractly modeled using the theory of mismatched hypothesis testing from statistical signal processing. By doing so, we can take advantage of performance characterizations in that literature to better understand the various machine learning issues.
2018-01-23
Baragchizadeh, A., Karnowski, T. P., Bolme, D. S., O’Toole, A. J..  2017.  Evaluation of Automated Identity Masking Method (AIM) in Naturalistic Driving Study (NDS). 2017 12th IEEE International Conference on Automatic Face Gesture Recognition (FG 2017). :378–385.

Identity masking methods have been developed in recent years for use in multiple applications aimed at protecting privacy. There is only limited work, however, targeted at evaluating effectiveness of methods-with only a handful of studies testing identity masking effectiveness for human perceivers. Here, we employed human participants to evaluate identity masking algorithms on video data of drivers, which contains subtle movements of the face and head. We evaluated the effectiveness of the “personalized supervised bilinear regression method for Facial Action Transfer (FAT)” de-identification algorithm. We also evaluated an edge-detection filter, as an alternate “fill-in” method when face tracking failed due to abrupt or fast head motions. Our primary goal was to develop methods for humanbased evaluation of the effectiveness of identity masking. To this end, we designed and conducted two experiments to address the effectiveness of masking in preventing recognition and in preserving action perception. 1- How effective is an identity masking algorithm?We conducted a face recognition experiment and employed Signal Detection Theory (SDT) to measure human accuracy and decision bias. The accuracy results show that both masks (FAT mask and edgedetection) are effective, but that neither completely eliminated recognition. However, the decision bias data suggest that both masks altered the participants' response strategy and made them less likely to affirm identity. 2- How effectively does the algorithm preserve actions? We conducted two experiments on facial behavior annotation. Results showed that masking had a negative effect on annotation accuracy for the majority of actions, with differences across action types. Notably, the FAT mask preserved actions better than the edge-detection mask. To our knowledge, this is the first study to evaluate a deidentification method aimed at preserving facial ac- ions employing human evaluators in a laboratory setting.