Biblio
In this paper, we present an algorithm for estimating the state of the power grid following a cyber-physical attack. We assume that an adversary attacks an area by: (i) disconnecting some lines within that area (failed lines), and (ii) obstructing the information from within the area to reach the control center. Given the phase angles of the buses outside the attacked area under the AC power flow model (before and after the attack), the algorithm estimates the phase angles of the buses and detects the failed lines inside the attacked area. The novelty of our approach is the transformation of the line failures detection problem, which is combinatorial in nature, to a convex optimization problem. As a result, our algorithm can detect any number of line failures in a running time that is independent of the number of failures and is solely dependent on the size of the network. To the best of our knowledge, this is the first convex relaxation for the problem of line failures detection using phase angle measurements under the AC power flow model. We evaluate the performance of our algorithm in the IEEE 118- and 300-bus systems, and show that it estimates the phase angles of the buses with less that 1% error, and can detect the line failures with 80% accuracy for single, double, and triple line failures.
Friendly jamming is a physical layer security technique that utilizes extra available nodes to jam any eavesdroppers. This paper considers the use of additional available nodes as friendly jammers in order to improve the security performance of a route through a wireless area network. One of the unresolved technical challenges is the combining of security metrics with typical service quality metrics. In this context, this paper considers the problem of routing through a D2D network while jointly minimizing the secrecy outage probability (SOP) and connection outage probability (COP), using friendly jamming to improve the SOP of each link. The jamming powers are determined to place nulls at friendly receivers while maximizing the power to eavesdroppers. Then the route metrics are derived, and the problem is framed as a convex optimization problem. We also consider that not all network users equally value SOP and COP, and so introduce an auxiliary variable to tune the optimization between the two metrics.