Biblio
There has been significant interest in studying security games for modeling the interplay of attacks and defenses on various systems involving critical infrastructure, financial system security, political campaigns, and civil safeguarding. However, existing security game models typically either assume additive utility functions, or that the attacker can attack only one target. Such assumptions lead to tractable analysis, but miss key inherent dependencies that exist among different targets in current complex networks. In this paper, we generalize the classical security game models to allow for non-additive utility functions. We also allow attackers to be able to attack multiple targets. We examine such a general security game from a theoretical perspective and provide a unified view. In particular, we show that each security game is equivalent to a combinatorial optimization problem over a set system ε, which consists of defender's pure strategy space. The key technique we use is based on the transformation, projection of a polytope, and the ellipsoid method. This work settles several open questions in security game domain and extends the state-of-the-art of both the polynomial solvable and NP-hard class of the security game.
Verifying that hardware design implementations adhere to specifications is a time intensive and sometimes intractable problem due to the massive size of the system's state space. Formal methods techniques can be used to prove certain tractable specification properties; however, they are expensive, and often require subject matter experts to develop and solve. Nonetheless, hardware verification is a critical process to ensure security and safety properties are met, and encapsulates problems associated with trust and reliability. For complex designs where coverage of the entire state space is unattainable, prioritizing regions most vulnerable to security or reliability threats would allow efficient allocation of valuable verification resources. Stackelberg security games model interactions between a defender, whose goal is to assign resources to protect a set of targets, and an attacker, who aims to inflict maximum damage on the targets after first observing the defender's strategy. In equilibrium, the defender has an optimal security deployment strategy, given the attacker's best response. We apply this Stackelberg security framework to synthesized hardware implementations using the design's network structure and logic to inform defender valuations and verification costs. The defender's strategy in equilibrium is thus interpreted as a prioritization of the allocation of verification resources in the presence of an adversary. We demonstrate this technique on several open-source synthesized hardware designs.