Visible to the public Biblio

Filters: Keyword is wireless environment  [Clear All Filters]
2020-08-13
Li, Xincheng, Liu, Yali, Yin, Xinchun.  2019.  An Anonymous Conditional Privacy-Preserving Authentication Scheme for VANETs. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1763—1770.
Vehicular ad hoc networks (VANETs) have been growing rapidly because it can improve traffic safety and efficiency in transportation. In VANETs, messages are broadcast in wireless environment, which is vulnerable to be attacked in many ways. Accordingly, it is essential to authenticate the legitimation of vehicles to guarantee the performance of services. In this paper, we propose an anonymous conditional privacy-preserving authentication scheme based on message authentication code (MAC) for VANETs. With verifiable secret sharing (VSS), vehicles can obtain a group key for message generation and authentication after a mutual authentication phase. Security analysis and performance evaluation show that the proposed scheme satisfies basic security and privacy-preserving requirements and has a better performance compared with some existing schemes in terms of computational cost and communication overhead.
2018-02-02
Chowdhury, M., Gawande, A., Wang, L..  2017.  Secure Information Sharing among Autonomous Vehicles in NDN. 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI). :15–26.

Autonomous vehicles must communicate with each other effectively and securely to make robust decisions. However, today's Internet falls short in supporting efficient data delivery and strong data security, especially in a mobile ad-hoc environment. Named Data Networking (NDN), a new data-centric Internet architecture, provides a better foundation for secure data sharing among autonomous vehicles. We examine two potential threats, false data dissemination and vehicle tracking, in an NDN-based autonomous vehicular network. To detect false data, we propose a four-level hierarchical trust model and the associated naming scheme for vehicular data authentication. Moreover, we address vehicle tracking concerns using a pseudonym scheme to anonymize vehicle names and certificate issuing proxies to further protect vehicle identity. Finally, we implemented and evaluated our AutoNDN application on Raspberry Pi-based mini cars in a wireless environment.