Visible to the public Biblio

Filters: Keyword is Safety management  [Clear All Filters]
2023-01-13
Li, Baofeng, Zhai, Feng, Fu, Yilun, Xu, Bin.  2022.  Analysis of Network Security Protection of Smart Energy Meter. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :718–722.
Design a new generation of smart power meter components, build a smart power network, implement power meter safety protection, and complete smart power meter network security protection. The new generation of smart electric energy meters mainly complete legal measurement, safety fee control, communication, control, calculation, monitoring, etc. The smart power utilization structure network consists of the master station server, front-end processor, cryptographic machine and master station to form a master station management system. Through data collection and analysis, the establishment of intelligent energy dispatching operation, provides effective energy-saving policy algorithms and strategies, and realizes energy-smart electricity use manage. The safety protection architecture of the electric energy meter is designed from the aspects of its own safety, full-scenario application safety, and safety management. Own security protection consists of hardware security protection and software security protection. The full-scene application security protection system includes four parts: boundary security, data security, password security, and security monitoring. Security management mainly provides application security management strategies and security responsibility division strategies. The construction of the intelligent electric energy meter network system lays the foundation for network security protection.
2022-09-09
He, Ruhai, Wan, Chengpeng, Jiang, Xinchen.  2021.  Risk Management of Port Operations: a Systematic Literature Review and Future Directions. 2021 6th International Conference on Transportation Information and Safety (ICTIS). :44—51.
With the continuous development of world economy, the trade and connection between countries are getting closer, in which ports are playing an increasingly important role. However, due to the inherent complexity of port operational environment, ports are exposed to various types of hazards and more likely to encounter risks with high frequency and serious consequences. Therefore, proper and effective risk management of ports is particularly essential and necessary. In this research, literature from three aspects including risk assessment of port operations and service, safety management of dangerous goods, and port supply chain risk management was collected and investigated, in order to put forward the future research direction related to the risk management of port operations. The research results show that, firstly, most of the current research mainly focuses on the operational risk of traditional ports and a lot of relevant achievements have been seen. However, few scholars have studied the risk issues of smart ports which are believed to be the trend of future with the rapid development and application of high and new technologies. Thus, it is suggested that more attention should be shifted to the identification and assessment of operational risks of smart ports considering their characteristics. Secondly, although the risk evaluation systems of port operational safety have been established and widely studied, more efforts are still needed in terms of the suitability and effectiveness of the proposed indicators, especially when dangerous goods are involved. Thirdly, risk management of port supply chain is another popular topic, in which, one of the main difficulties lies on the collection of risk related statistics data due to the fact that port supply chain systems are usually huge and complex. It is inevitably that the evaluation results will lack objectivity to some extent. Therefore, it calls for more research on the risk assessment of port supply chains in a quantitative manner. In addition, resilience, as an emerging concept in the transportation field, will provide a new angle on the risk management of port supply chains.
2022-05-10
Hassan, Salman, Bari, Safioul, Shuvo, A S M Muktadiru Baized, Khan, Shahriar.  2021.  Implementation of a Low-Cost IoT Enabled Surveillance Security System. 2021 7th International Conference on Applied System Innovation (ICASI). :101–104.
Security is a requirement in society, yet its wide implementation is held back because of high expenses, and barriers to the use of technology. Experimental implementation of security at low cost will only help in promoting the technology at more affordable prices. This paper describes the design of a security system of surveillance using Raspberry Pi and Arduino UNO. The design senses the presence of \$a\$ human in a surveillance area and immediately sets off the buzzer and simultaneously starts capturing video of the motion it had detected and stores it in a folder. When the design senses a motion, it immediately sends an SMS to the user. The user of this design can see the live video of the motion it detects using the internet connection from a remote area. Our objective of making a low-cost surveillance area security system has been mostly fulfilled. Although this is a low-cost project, features can be compared with existing commercially available systems.
2020-03-02
Zheng, Zhengfan, Zheng, Bo, Wu, Yuechao, Chen, Shangui.  2019.  An Integrated Safety Management System Based on Ubiquitous Internet of Things in Electricity for Smart Pumped-storage Power Stations. 2019 4th International Conference on Intelligent Green Building and Smart Grid (IGBSG). :548–551.
The safety management is an important and fundamental task in the construction and operation of pumped-storage power stations. However, because of the traditional technical framework, the relevant systems are separated from each other, leading to a lot of disadvantages in application and performance. In order to meet the requirements of smart pumped-storage power stations, an integrated safety management system (ISMS) based on ubiquitous internet of things in electricity is proposed in this paper. The ISMS is divided into five layers including data display layer, data manipulation layer, data processing layer, data transmission layer and data acquisition layer. It consists of six modules, i.e., central control module, cave access control and personnel location module, video and security monitoring module, emergency broadcasting and communication module, geological warning module, and fall protection module. All modules are integrated into a unified information platform.
2018-02-02
Brunner, M., Huber, M., Sauerwein, C., Breu, R..  2017.  Towards an Integrated Model for Safety and Security Requirements of Cyber-Physical Systems. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :334–340.

Increasing interest in cyber-physical systems with integrated computational and physical capabilities that can interact with humans can be identified in research and practice. Since these systems can be classified as safety- and security-critical systems the need for safety and security assurance and certification will grow. Moreover, these systems are typically characterized by fragmentation, interconnectedness, heterogeneity, short release cycles, cross organizational nature and high interference between safety and security requirements. These properties combined with the assurance of compliance to multiple standards, carrying out certification and re-certification, and the lack of an approach to model, document and integrate safety and security requirements represent a major challenge. In order to address this gap we developed a domain agnostic approach to model security and safety requirements in an integrated view to support certification processes during design and run-time phases of cyber-physical systems.