Visible to the public Biblio

Filters: Keyword is computer science education  [Clear All Filters]
2018-01-10
Holdsworth, J., Apeh, E..  2017.  An Effective Immersive Cyber Security Awareness Learning Platform for Businesses in the Hospitality Sector. 2017 IEEE 25th International Requirements Engineering Conference Workshops (REW). :111–117.
The rapid digitalisation of the hospitality industry over recent years has brought forth many new points of attack for consideration. The hasty implementation of these systems has created a reality in which businesses are using the technical solutions, but employees have very little awareness when it comes to the threats and implications that they might present. This gap in awareness is further compounded by the existence of preestablished, often rigid, cultures that drive how hospitality businesses operate. Potential attackers are recognising this and the last two years have seen a huge increase in cyber-attacks within the sector.Attempts at addressing the increasing threats have taken the form of technical solutions such as encryption, access control, CCTV, etc. However, a high majority of security breaches can be directly attributed to human error. It is therefore necessary that measures for addressing the rising trend of cyber-attacks go beyond just providing technical solutions and make provision for educating employees about how to address the human elements of security. Inculcating security awareness amongst hospitality employees will provide a foundation upon which a culture of security can be created to promote the seamless and secured interaction of hotel users and technology.One way that the hospitality industry has tried to solve the awareness issue is through their current paper-based training. This is unengaging, expensive and presents limited ways to deploy, monitor and evaluate the impact and effectiveness of the content. This leads to cycles of constant training, making it very hard to initiate awareness, particularly within those on minimum waged, short-term job roles.This paper presents a structured approach for eliciting industry requirement for developing and implementing an immersive Cyber Security Awareness learning platform. It used a series of over 40 interviews and threat analysis of the hospitality industry to identify the requirements fo- designing and implementing cyber security program which encourage engagement through a cycle of reward and recognition. In particular, the need for the use of gamification elements to provide an engaging but gentle way of educating those with little or no desire to learn was identified and implemented. Also presented is a method for guiding and monitoring the impact of their employee's progress through the learning management system whilst monitoring the levels of engagement and positive impact the training is having on the business.
2017-09-06
C. Theisen, L. Williams, K. Oliver, E. Murphy-Hill.  2016.  Software Security Education at Scale. 2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C). :346-355.

Massively Open Online Courses (MOOCs) provide a unique opportunity to reach out to students who would not normally be reached by alleviating the need to be physically present in the classroom. However, teaching software security coursework outside of a classroom setting can be challenging. What are the challenges when converting security material from an on-campus course to the MOOC format? The goal of this research is to assist educators in constructing software security coursework by providing a comparison of classroom courses and MOOCs. In this work, we compare demographic information, student motivations, and student results from an on-campus software security course and a MOOC version of the same course. We found that the two populations of students differed, with the MOOC reaching a more diverse set of students than the on-campus course. We found that students in the on-campus course had higher quiz scores, on average, than students in the MOOC. Finally, we document our experience running the courses and what we would do differently to assist future educators constructing similar MOOC's.

2017-03-08
Leong, F. H..  2015.  Automatic detection of frustration of novice programmers from contextual and keystroke logs. 2015 10th International Conference on Computer Science Education (ICCSE). :373–377.

Novice programmers exhibit a repertoire of affective states over time when they are learning computer programming. The modeling of frustration is important as it informs on the need for pedagogical intervention of the student who may otherwise lose confidence and interest in the learning. In this paper, contextual and keystroke features of the students within a Java tutoring system are used to detect frustration of student within a programming exercise session. As compared to psychological sensors used in other studies, the use of contextual and keystroke logs are less obtrusive and the equipment used (keyboard) is ubiquitous in most learning environment. The technique of logistic regression with lasso regularization is utilized for the modeling to prevent over-fitting. The results showed that a model that uses only contextual and keystroke features achieved a prediction accuracy level of 0.67 and a recall measure of 0.833. Thus, we conclude that it is possible to detect frustration of a student from distilling both the contextual and keystroke logs within the tutoring system with an adequate level of accuracy.

2017-03-07
Tunc, C., Hariri, S., Montero, F. D. L. P., Fargo, F., Satam, P., Al-Nashif, Y..  2015.  Teaching and Training Cybersecurity as a Cloud Service. 2015 International Conference on Cloud and Autonomic Computing. :302–308.

The explosive growth of IT infrastructures, cloud systems, and Internet of Things (IoT) have resulted in complex systems that are extremely difficult to secure and protect against cyberattacks which are growing exponentially in complexity and in number. Overcoming the cybersecurity challenges is even more complicated due to the lack of training and widely available cybersecurity environments to experiment with and evaluate new cybersecurity methods. The goal of our research is to address these challenges by exploiting cloud services. In this paper, we present the design, analysis, and evaluation of a cloud service that we refer to as Cybersecurity Lab as a Service (CLaaS) which offers virtual cybersecurity experiments that can be accessed from anywhere and from any device (desktop, laptop, tablet, smart mobile device, etc.) with Internet connectivity. In CLaaS, we exploit cloud computing systems and virtualization technologies to provide virtual cybersecurity experiments and hands-on experiences on how vulnerabilities are exploited to launch cyberattacks, how they can be removed, and how cyber resources and services can be hardened or better protected. We also present our experimental results and evaluation of CLaaS virtual cybersecurity experiments that have been used by graduate students taking our cybersecurity class as well as by high school students participating in GenCyber camps.

Chatlani, Neeraj, Myers, Daniel S..  2016.  A Curiosity-Driven System for Developing Coding Literacy (Abstract Only). Proceedings of the 47th ACM Technical Symposium on Computing Science Education. :695–695.

Coding literacy is the ability to understand a written computer program and interpret its functionality and output. Literacy is a valuable skill for programmers at all levels, because understanding written code requires developing and applying mental models of program execution. Previous work has shown that explicit instruction in program literacy is beneficial for new computer science students and aids the development of algorithmic thinking. This poster summarizes the authors' work- in-progress developing COLT: the Coding Literacy Trainer, a web-based adaptive tutorial system that provides instruction in the fundamentals of coding literacy and program interpretation to new computer science students. In addition to its pedagogical applications, COLT serves as a development platform for a novel theoretical foundation for adaptive teaching systems based on the concept of intrinsic curiosity. Inspired by the work of Lee et al. in the field of developmental robotics, a curiosity-driven system explores its complete knowledge environment in way that continually maximizes its learning progress. Thus, learners are driven to explore areas where they are currently making the greatest advances, while avoiding regions of the knowledge space that are either too simple to be interesting or too challenging to be approachable at the current time. The poster summarizes the theoretical background and implementation of the COLT system in a clear, easy-to-read format. A web-based version of COLT is currently under active development and slated for an open-source release in the spring of 2016.

2015-05-06
Conklin, W.A., Cline, R.E., Roosa, T..  2014.  Re-engineering Cybersecurity Education in the US: An Analysis of the Critical Factors. System Sciences (HICSS), 2014 47th Hawaii International Conference on. :2006-2014.

The need for cyber security professionals continues to grow and education systems are responding in a variety of way. The US government has weighed in with two efforts, the NICE effort led by NIST and the CAE effort jointly led by NSA and DHS. Industry has unfilled needs and the CAE program is changing to meet both NICE and industry needs. This paper analyzes these efforts and examines several critical, yet unaddressed issues facing school programs as they adapt to new criteria and guidelines. Technical issues are easy to enumerate, yet it is the programmatic and student success factors that will define successful programs.

2015-05-05
Stanisavljevic, Z., Stanisavljevic, J., Vuletic, P., Jovanovic, Z..  2014.  COALA - System for Visual Representation of Cryptography Algorithms. Learning Technologies, IEEE Transactions on. 7:178-190.

Educational software systems have an increasingly significant presence in engineering sciences. They aim to improve students' attitudes and knowledge acquisition typically through visual representation and simulation of complex algorithms and mechanisms or hardware systems that are often not available to the educational institutions. This paper presents a novel software system for CryptOgraphic ALgorithm visuAl representation (COALA), which was developed to support a Data Security course at the School of Electrical Engineering, University of Belgrade. The system allows users to follow the execution of several complex algorithms (DES, AES, RSA, and Diffie-Hellman) on real world examples in a step by step detailed view with the possibility of forward and backward navigation. Benefits of the COALA system for students are observed through the increase of the percentage of students who passed the exam and the average grade on the exams during one school year.
 

2015-04-30
Frauenstein, E.D., Von Solms, R..  2014.  Combatting phishing: A holistic human approach. Information Security for South Africa (ISSA), 2014. :1-10.

Phishing continues to remain a lucrative market for cyber criminals, mostly because of the vulnerable human element. Through emails and spoofed-websites, phishers exploit almost any opportunity using major events, considerable financial awards, fake warnings and the trusted reputation of established organizations, as a basis to gain their victims' trust. For many years, humans have often been referred to as the `weakest link' towards protecting information. To gain their victims' trust, phishers continue to use sophisticated looking emails and spoofed websites to trick them, and rely on their victims' lack of knowledge, lax security behavior and organizations' inadequate security measures towards protecting itself and their clients. As such, phishing security controls and vulnerabilities can arguably be classified into three main elements namely human factors (H), organizational aspects (O) and technological controls (T). All three of these elements have the common feature of human involvement and as such, security gaps are inevitable. Each element also functions as both security control and security vulnerability. A holistic framework towards combatting phishing is required whereby the human feature in all three of these elements is enhanced by means of a security education, training and awareness programme. This paper discusses the educational factors required to form part of a holistic framework, addressing the HOT elements as well as the relationships between these elements towards combatting phishing. The development of this framework uses the principles of design science to ensure that it is developed with rigor. Furthermore, this paper reports on the verification of the framework.