Biblio
Nowadays the application of integrated management systems (IMS) attracts the attention of top management from various organizations. However, there is an important problem of running the security audits in IMS and realization of complex checks of different ISO standards in full scale with the essential reducing of available resources.
Tracing and integrating security requirements throughout the development process is a key challenge in security engineering. In socio-technical systems, security requirements for the organizational and technical aspects of a system are currently dealt with separately, giving rise to substantial misconceptions and errors. In this paper, we present a model-based security engineering framework for supporting the system design on the organizational and technical level. The key idea is to allow the involved experts to specify security requirements in the languages they are familiar with: business analysts use BPMN for procedural system descriptions; system developers use UML to design and implement the system architecture. Security requirements are captured via the language extensions SecBPMN2 and UMLsec. We provide a model transformation to bridge the conceptual gap between SecBPMN2 and UMLsec. Using UMLsec policies, various security properties of the resulting architecture can be verified. In a case study featuring an air traffic management system, we show how our framework can be practically applied.
Data outsourcing in cloud is emerging as a successful paradigm that benefits organizations and enterprises with high-performance, low-cost, scalable data storage and sharing services. However, this paradigm also brings forth new challenges for data confidentiality because the outsourced are not under the physic control of the data owners. The existing schemes to achieve the security and usability goal usually apply encryption to the data before outsourcing them to the storage service providers (SSP), and disclose the decryption keys only to authorized user. They cannot ensure the security of data while operating data in cloud where the third-party services are usually semi-trustworthy, and need lots of time to deal with the data. We construct a privacy data management system appending hierarchical access control called HAC-DMS, which can not only assure security but also save plenty of time when updating data in cloud.
Organizations are experiencing an ever-growing concern of how to identify and defend against insider threats. Those who have authorized access to sensitive organizational data are placed in a position of power that could well be abused and could cause significant damage to an organization. This could range from financial theft and intellectual property theft to the destruction of property and business reputation. Traditional intrusion detection systems are neither designed nor capable of identifying those who act maliciously within an organization. In this paper, we describe an automated system that is capable of detecting insider threats within an organization. We define a tree-structure profiling approach that incorporates the details of activities conducted by each user and each job role and then use this to obtain a consistent representation of features that provide a rich description of the user's behavior. Deviation can be assessed based on the amount of variance that each user exhibits across multiple attributes, compared against their peers. We have performed experimentation using ten synthetic data-driven scenarios and found that the system can identify anomalous behavior that may be indicative of a potential threat. We also show how our detection system can be combined with visual analytics tools to support further investigation by an analyst.
The United States has US CYBERCOM to protect the US Military Infrastructure and DHS to protect the nation's critical cyber infrastructure. These organizations deal with wide ranging issues at a national level. This leaves local and state governments to largely fend for themselves in the cyber frontier. This paper will focus on how to determine the threat to a community and what indications and warnings can lead us to suspect an attack is underway. To try and help answer these questions we utilized the concepts of Honey pots and Honey nets and extended them to a multi-organization concept within a geographic boundary to form a Honey Community. The initial phase of the research done in support of this paper was to create a fictitious community with various components to entice would-be attackers and determine if the use of multiple sectors in a community would aid in the determination of an attack.
The energy sector has been actively looking into cyber risk assessment at a global level, as it has a ripple effect; risk taken at one step in supply chain has an impact on all the other nodes. Cyber-attacks not only hinder functional operations in an organization but also waves damaging effects to the reputation and confidence among shareholders resulting in financial losses. Organizations that are open to the idea of protecting their assets and information flow and are equipped; enough to respond quickly to any cyber incident are the ones who prevail longer in global market. As a contribution we put forward a modular plan to mitigate or reduce cyber risks in global supply chain by identifying potential cyber threats at each step and identifying their immediate counterm easures.
Security breaches and attacks are becoming a more critical and, simultaneously, a challenging problems for many firms in networked supply chains. A game theory-based model is developed to investigate how interdependent feature of information security risk influence the optimal strategy of firms to invest in information security. The equilibrium levels of information security investment under non-cooperative game condition are compared with socially optimal solutions. The results show that the infectious risks often induce firms to invest inefficiently whereas trust risks lead to overinvest in information security. We also find that firm's investment may not necessarily monotonous changes with infectious risks and trust risks in a centralized case. Furthermore, relative to the socially efficient level, firms facing infectious risks may invest excessively depending on whether trust risks is large enough.
Information and Communications Technologies (ICTs), especially the Internet, have become a key enabler for government organisations, businesses and individuals. With increasing growth in the adoption and use of ICT devices such as smart phones, personal computers and the Internet, Cybersecurity is one of the key concerns facing modern organisations in both developed and developing countries. This paper presents an overview of cybersecurity challenges in Bhutan, within the context that the nation is emerging as an ICT developing country. This study examines the cybersecurity incidents reported both in national media and government reports, identification and analysis of different types of cyber threats, understanding of the characteristics and motives behind cyber-attacks, and their frequency of occurrence since 1999. A discussion on an ongoing research study to investigate cybersecurity management and practices for Bhutan's government organisations is also highlighted.
Sharing cyber security data across organizational boundaries brings both privacy risks in the exposure of personal information and data, and organizational risk in disclosing internal information. These risks occur as information leaks in network traffic or logs, and also in queries made across organizations. They are also complicated by the trade-offs in privacy preservation and utility present in anonymization to manage disclosure. In this paper, we define three principles that guide sharing security information across organizations: Least Disclosure, Qualitative Evaluation, and Forward Progress. We then discuss engineering approaches that apply these principles to a distributed security system. Application of these principles can reduce the risk of data exposure and help manage trust requirements for data sharing, helping to meet our goal of balancing privacy, organizational risk, and the ability to better respond to security with shared information.
Phishing continues to remain a lucrative market for cyber criminals, mostly because of the vulnerable human element. Through emails and spoofed-websites, phishers exploit almost any opportunity using major events, considerable financial awards, fake warnings and the trusted reputation of established organizations, as a basis to gain their victims' trust. For many years, humans have often been referred to as the `weakest link' towards protecting information. To gain their victims' trust, phishers continue to use sophisticated looking emails and spoofed websites to trick them, and rely on their victims' lack of knowledge, lax security behavior and organizations' inadequate security measures towards protecting itself and their clients. As such, phishing security controls and vulnerabilities can arguably be classified into three main elements namely human factors (H), organizational aspects (O) and technological controls (T). All three of these elements have the common feature of human involvement and as such, security gaps are inevitable. Each element also functions as both security control and security vulnerability. A holistic framework towards combatting phishing is required whereby the human feature in all three of these elements is enhanced by means of a security education, training and awareness programme. This paper discusses the educational factors required to form part of a holistic framework, addressing the HOT elements as well as the relationships between these elements towards combatting phishing. The development of this framework uses the principles of design science to ensure that it is developed with rigor. Furthermore, this paper reports on the verification of the framework.