Biblio
In today's world, software is ubiquitous and relied upon to perform many important and critical functions. Unfortunately, software is riddled with security vulnerabilities that invite exploitation. Attackers are particularly attracted to software systems that hold sensitive data with the goal of compromising the data. For such systems, this paper proposes a modeling method applied at design time to identify and reduce the attack surface, which arises due to the locations containing sensitive data within the software system and the accessibility of those locations to attackers. The method reduces the attack surface by changing the design so that the number of such locations is reduced. The method performs these changes on a graphical model of the software system. The changes are then considered for application to the design of the actual system to improve its security.
The rapid development of cloud computing has resulted in the emergence of numerous web services on the Internet. Selecting a suitable cloud service is becoming a major problem for users especially non-professionals. Quality of Service (QoS) is considered to be the criterion for judging web services. There are several Collaborative Filtering (CF)-based QoS prediction methods proposed in recent years. QoS values among different users may vary largely due to the network and geographical location. Moreover, QoS data provided by untrusted users will definitely affect the prediction accuracy. However, most existing methods seldom take both facts into consideration. In this paper, we present a trust-aware and location-based approach for web service QoS prediction. A trust value for each user is evaluated before the similarity calculation and the location is taken into account in similar neighbors selecting. A series of experiments are performed based on a realworld QoS dataset including 339 service users and 5,825 services. The experimental analysis shows that the accuracy of our method is much higher than other CF-based methods.
Authentication is one of the key aspects of securing applications and systems alike. While in most existing systems this is achieved using usernames and passwords it has been continuously shown that this authentication method is not secure. Studies that have been conducted have shown that these systems have vulnerabilities which lead to cases of impersonation and identity theft thus there is need to improve such systems to protect sensitive data. In this research, we explore the combination of the user's location together with traditional usernames and passwords as a multi factor authentication system to make authentication more secure. The idea involves comparing a user's mobile device location with that of the browser and comparing the device's Bluetooth key with the key used during registration. We believe by leveraging existing technologies such as Bluetooth and GPS we can reduce implementation costs whilst improving security.
This paper proposes a design method of a support tool for detection and diagnosis of failures in discrete event systems (DES). The design of this diagnoser goes through three phases: an identification phase and finding paths and temporal parameters of the model describing the two modes of normal and faulty operation, a detection phase provided by the comparison and monitoring time operation and a location phase based on the combination of the temporal evolution of the parameters and thresholds exceeded technique. Our contribution lays in the application of this technique in the presence of faults arising simultaneously, sensors and actuators. The validation of the proposed approach is illustrated in a filling system through a simulation.
In the recent years, we have observed the development of several connected and mobile devices intended for daily use. This development has come with many risks that might not be perceived by the users. These threats are compromising when an unauthorized entity has access to private big data generated through the user objects in the Internet of Things. In the literature, many solutions have been proposed in order to protect the big data, but the security remains a challenging issue. This work is carried out with the aim to provide a solution to the access control to the big data and securing the localization of their generator objects. The proposed models are based on Attribute Based Encryption, CHORD protocol and $μ$TESLA. Through simulations, we compare our solutions to concurrent protocols and we show its efficiency in terms of relevant criteria.