Visible to the public Biblio

Filters: Keyword is risk metrics  [Clear All Filters]
2020-11-04
Chamarthi, R., Reddy, A. P..  2018.  Empirical Methodology of Testing Using FMEA and Quality Metrics. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA). :85—90.

Testing which is an indispensable part of software engineering is itself an art and science which emerged as a discipline over a period. On testing, if defects are found, testers diminish the risk by providing the awareness of defects and solutions to deal with them before release. If testing does not find any defects, testing assure that under certain conditions the system functions correctly. To guarantee that enough testing has been done, major risk areas need to be tested. We have to identify the risks, analyse and control them. We need to categorize the risk items to decide the extent of testing to be covered. Also, Implementation of structured metrics is lagging in software testing. Efficient metrics are necessary to evaluate, manage the testing process and make testing a part of engineering discipline. This paper proposes the usage of risk based testing using FMEA technique and provides an ideal set of metrics which provides a way to ensure effective testing process.

2018-02-06
Aksu, M. U., Dilek, M. H., Tatlı, E. İ, Bicakci, K., Dirik, H. İ, Demirezen, M. U., Aykır, T..  2017.  A Quantitative CVSS-Based Cyber Security Risk Assessment Methodology for IT Systems. 2017 International Carnahan Conference on Security Technology (ICCST). :1–8.

IT system risk assessments are indispensable due to increasing cyber threats within our ever-growing IT systems. Moreover, laws and regulations urge organizations to conduct risk assessments regularly. Even though there exist several risk management frameworks and methodologies, they are in general high level, not defining the risk metrics, risk metrics values and the detailed risk assessment formulas for different risk views. To address this need, we define a novel risk assessment methodology specific to IT systems. Our model is quantitative, both asset and vulnerability centric and defines low and high level risk metrics. High level risk metrics are defined in two general categories; base and attack graph-based. In our paper, we provide a detailed explanation of formulations in each category and make our implemented software publicly available for those who are interested in applying the proposed methodology to their IT systems.