Visible to the public Biblio

Filters: Keyword is UNSW-NB15 dataset  [Clear All Filters]
2018-04-02
Al-Zewairi, M., Almajali, S., Awajan, A..  2017.  Experimental Evaluation of a Multi-Layer Feed-Forward Artificial Neural Network Classifier for Network Intrusion Detection System. 2017 International Conference on New Trends in Computing Sciences (ICTCS). :167–172.

Deep Learning has been proven more effective than conventional machine-learning algorithms in solving classification problem with high dimensionality and complex features, especially when trained with big data. In this paper, a deep learning binomial classifier for Network Intrusion Detection System is proposed and experimentally evaluated using the UNSW-NB15 dataset. Three different experiments were executed in order to determine the optimal activation function, then to select the most important features and finally to test the proposed model on unseen data. The evaluation results demonstrate that the proposed classifier outperforms other models in the literature with 98.99% accuracy and 0.56% false alarm rate on unseen data.

2018-02-06
Moustafa, N., Creech, G., Sitnikova, E., Keshk, M..  2017.  Collaborative Anomaly Detection Framework for Handling Big Data of Cloud Computing. 2017 Military Communications and Information Systems Conference (MilCIS). :1–6.

With the ubiquitous computing of providing services and applications at anywhere and anytime, cloud computing is the best option as it offers flexible and pay-per-use based services to its customers. Nevertheless, security and privacy are the main challenges to its success due to its dynamic and distributed architecture, resulting in generating big data that should be carefully analysed for detecting network's vulnerabilities. In this paper, we propose a Collaborative Anomaly Detection Framework (CADF) for detecting cyber attacks from cloud computing environments. We provide the technical functions and deployment of the framework to illustrate its methodology of implementation and installation. The framework is evaluated on the UNSW-NB15 dataset to check its credibility while deploying it in cloud computing environments. The experimental results showed that this framework can easily handle large-scale systems as its implementation requires only estimating statistical measures from network observations. Moreover, the evaluation performance of the framework outperforms three state-of-the-art techniques in terms of false positive rate and detection rate.