Biblio
Computer networks are overwhelmed by self propagating malware (worms, viruses, trojans). Although the number of security vulnerabilities grows every day, not the same thing can be said about the number of defense methods. But the most delicate problem in the information security domain remains detecting unknown attacks known as zero-day attacks. This paper presents methods for isolating the malicious traffic by using a honeypot system and analyzing it in order to automatically generate attack signatures for the Snort intrusion detection/prevention system. The honeypot is deployed as a virtual machine and its job is to log as much information as it can about the attacks. Then, using a protected machine, the logs are collected remotely, through a safe connection, for analysis. The challenge is to mitigate the risk we are exposed to and at the same time search for unknown attacks.
5G, the fifth generation of mobile communication networks, is considered as one of the main IoT enablers. Connecting billions of things, 5G/IoT will be dealing with trillions of GBytes of data. Securing such large amounts of data is a very challenging task. Collected data varies from simple temperature measurements to more critical transaction data. Thus, applying uniform security measures is a waste of resources (processing, memory, and network bandwidth). Alternatively, a multi-level security model needs to be applied according to the varying requirements. In this paper, we present a multi-level security scheme (BLP) applied originally in the information security domain. We review its application in the network domain, and propose a modified version of BLP for the 5G/IoT case. The proposed model is proven to be secure and compliant with the model rules.