Biblio
The wireless boundaries of networks are becoming increasingly important from a security standpoint as the proliferation of 802.11 WiFi technology increases. Concurrently, the complexity of 802.11 access point implementation is rapidly outpacing the standardization process. The result is that nascent wireless functionality management is left up to the individual provider's implementation, which creates new vulnerabilities in wireless networks. One such functional improvement to 802.11 is the virtual access point (VAP), a method of broadcasting logically separate networks from the same physical equipment. Network reconnaissance benefits from VAP identification, not only because network topology is a primary aim of such reconnaissance, but because the knowledge that a secure network and an insecure network are both being broadcast from the same physical equipment is tactically relevant information. In this work, we present a novel graph-theoretic approach to VAP identification which leverages a body of research concerned with establishing community structure. We apply our approach to both synthetic data and a large corpus of real-world data to demonstrate its efficacy. In most real-world cases, near-perfect blind identification is possible highlighting the effectiveness of our proposed VAP identification algorithm.