Visible to the public Biblio

Filters: Keyword is trust measurement  [Clear All Filters]
2020-04-03
Jabeen, Gul, Ping, Luo.  2019.  A Unified Measurable Software Trustworthy Model Based on Vulnerability Loss Speed Index. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :18—25.

As trust becomes increasingly important in the software domain. Due to its complex composite concept, people face great challenges, especially in today's dynamic and constantly changing internet technology. In addition, measuring the software trustworthiness correctly and effectively plays a significant role in gaining users trust in choosing different software. In the context of security, trust is previously measured based on the vulnerability time occurrence to predict the total number of vulnerabilities or their future occurrence time. In this study, we proposed a new unified index called "loss speed index" that integrates the most important variables of software security such as vulnerability occurrence time, number and severity loss, which are used to evaluate the overall software trust measurement. Based on this new definition, a new model called software trustworthy security growth model (STSGM) has been proposed. This paper also aims at filling the gap by addressing the severity of vulnerabilities and proposed a vulnerability severity prediction model, the results are further evaluated by STSGM to estimate the future loss speed index. Our work has several features such as: (1) It is used to predict the vulnerability severity/type in future, (2) Unlike traditional evaluation methods like expert scoring, our model uses historical data to predict the future loss speed of software, (3) The loss metric value is used to evaluate the risk associated with different software, which has a direct impact on software trustworthiness. Experiments performed on real software vulnerability datasets and its results are analyzed to check the correctness and effectiveness of the proposed model.

2015-04-30
Ing-Ray Chen, Jia Guo.  2014.  Dynamic Hierarchical Trust Management of Mobile Groups and Its Application to Misbehaving Node Detection. Advanced Information Networking and Applications (AINA), 2014 IEEE 28th International Conference on. :49-56.

In military operation or emergency response situations, very frequently a commander will need to assemble and dynamically manage Community of Interest (COI) mobile groups to achieve a critical mission assigned despite failure, disconnection or compromise of COI members. We combine the designs of COI hierarchical management for scalability and reconfigurability with COI dynamic trust management for survivability and intrusion tolerance to compose a scalable, reconfigurable, and survivable COI management protocol for managing COI mission-oriented mobile groups in heterogeneous mobile environments. A COI mobile group in this environment would consist of heterogeneous mobile entities such as communication-device-carried personnel/robots and aerial or ground vehicles operated by humans exhibiting not only quality of service (QoS) characters, e.g., competence and cooperativeness, but also social behaviors, e.g., connectivity, intimacy and honesty. A COI commander or a subtask leader must measure trust with both social and QoS cognition depending on mission task characteristics and/or trustee properties to ensure successful mission execution. In this paper, we present a dynamic hierarchical trust management protocol that can learn from past experiences and adapt to changing environment conditions, e.g., increasing misbehaving node population, evolving hostility and node density, etc. to enhance agility and maximize application performance. With trust-based misbehaving node detection as an application, we demonstrate how our proposed COI trust management protocol is resilient to node failure, disconnection and capture events, and can help maximize application performance in terms of minimizing false negatives and positives in the presence of mobile nodes exhibiting vastly distinct QoS and social behaviors.

Ing-Ray Chen, Jia Guo.  2014.  Dynamic Hierarchical Trust Management of Mobile Groups and Its Application to Misbehaving Node Detection. Advanced Information Networking and Applications (AINA), 2014 IEEE 28th International Conference on. :49-56.

In military operation or emergency response situations, very frequently a commander will need to assemble and dynamically manage Community of Interest (COI) mobile groups to achieve a critical mission assigned despite failure, disconnection or compromise of COI members. We combine the designs of COI hierarchical management for scalability and reconfigurability with COI dynamic trust management for survivability and intrusion tolerance to compose a scalable, reconfigurable, and survivable COI management protocol for managing COI mission-oriented mobile groups in heterogeneous mobile environments. A COI mobile group in this environment would consist of heterogeneous mobile entities such as communication-device-carried personnel/robots and aerial or ground vehicles operated by humans exhibiting not only quality of service (QoS) characters, e.g., competence and cooperativeness, but also social behaviors, e.g., connectivity, intimacy and honesty. A COI commander or a subtask leader must measure trust with both social and QoS cognition depending on mission task characteristics and/or trustee properties to ensure successful mission execution. In this paper, we present a dynamic hierarchical trust management protocol that can learn from past experiences and adapt to changing environment conditions, e.g., increasing misbehaving node population, evolving hostility and node density, etc. to enhance agility and maximize application performance. With trust-based misbehaving node detection as an application, we demonstrate how our proposed COI trust management protocol is resilient to node failure, disconnection and capture events, and can help maximize application performance in terms of minimizing false negatives and positives in the presence of mobile nodes exhibiting vastly distinct QoS and social behaviors.