Visible to the public Biblio

Filters: Keyword is underwater acoustic networks  [Clear All Filters]
2022-05-06
Diamant, Roee, Casari, Paolo, Tomasin, Stefano.  2021.  Topology-based Secret Key Generation for Underwater Acoustic Networks. 2021 Fifth Underwater Communications and Networking Conference (UComms). :1—5.
We propose a method to let a source and a destination agree on a key that remains secret to a potential eavesdropper in an underwater acoustic network (UWAN). We generate the key from the propagation delay measured over a set of multihop routes: this harvests the randomness in the UWAN topology and turns the slow sound propagation in the water into an advantage for the key agreement protocol. Our scheme relies on a route discovery handshake. During this process, all intermediate relays accumulate message processing delays, so that both the source and the destination can compute the actual propagation delays along each route, and map this information to a string of bits. Finally, via a secret key agreement from the information-theoretic security framework, we obtain an equal set of bits at the source and destination, which is provably secret to a potential eavesdropper located away from both nodes. Our simulation results show that, even for small UWANs of 4 nodes, we obtain 11 secret bits per explored topology, and that the protocol is insensitive to an average node speed of up to 0.5 m/s.
2021-07-08
Chiariotti, Federico, Signori, Alberto, Campagnaro, Filippo, Zorzi, Michele.  2020.  Underwater Jamming Attacks as Incomplete Information Games. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1033—1038.
Autonomous Underwater Vehicles (AUVs) have several fundamental civilian and military applications, and Denial of Service (DoS) attacks against their communications are a serious threat. In this work, we analyze such an attack using game theory in an asymmetric scenario, in which the node under attack does not know the position of the jammer that blocks its signals. The jammer has a dual objective, namely, disrupting communications and forcing the legitimate transmitter to spend more energy protecting its own transmissions. Our model shows that, if both nodes act rationally, the transmitter is able to quickly reduce its disadvantage, estimating the location of the jammer and responding optimally to the attack.
2018-04-04
Campagnaro, Filippo, Francescon, Roberto, Kebkal, Oleksiy, Casari, Paolo, Kebkal, Konstantin, Zorzi, Michele.  2017.  Full Reconfiguration of Underwater Acoustic Networks Through Low-Level Physical Layer Access. Proceedings of the International Conference on Underwater Networks & Systems. :9:1–9:8.
Underwater acoustic communications experiments often involve custom implementations of schemes and protocols for the physical and data link layers. However, most commercial modems focus on providing reliable or optimized communication links, rather than on allowing low-level reconfiguration or reprogramming of modulation and coding schemes. As a result, the physical layer is typically provided as a closed, non-reprogrammable black box, accessible by the user only through a specific interface. While software-defined modems would be the ultimate solution to overcome this issue, having access to the symbols transmitted by the modems using a proprietary modulation format already opens up a number of research opportunities, e.g., aimed at the cross-layer design and optimization of channel coding schemes and communication protocols. In this paper, we take the latter approach. We consider the commercial EvoLogics modem, driven by a custom firmware version that bypasses the channel coding methods applied by the modem, and allows the user to set the transmit bit rate to any desired value within a given set. This makes it possible to evaluate different coding schemes in the presence of different bit rates. Our results show that the custom firmware offers sufficient flexibility to test different configurations of the coding schemes and bit rates, by providing direct access both to correctly decoded and to corrupted symbols, which can be separated at the receiver for further processing. In addition, we show that the DESERT Underwater framework can also leverage the same flexibility by employing low-level physical layer access in more complex networking experiments.
Gorma, Wael Mohamed, Mitchell, Paul Daniel.  2017.  Performance of the Combined Free/Demand Assignment Multiple Access Protocol via Underwater Networks. Proceedings of the International Conference on Underwater Networks & Systems. :5:1–5:2.
This paper considers the use of Combined Free/Demand Assignment Multiple Access (CFDAMA) for Underwater Acoustic Networks (UANs). The long propagation delay places severe constraints on the trade-off between end-to-end delay and the achievable channel utilisation. Free assignment is shown to offer close to the theoretical minimum end-to-end delay at low channel loads. Demand assignment is shown to have a much greater tolerance to increasing channel load over virtually the entire channel utilisation range, but with longer delay. CFDAMA is shown to exhibit significantly enhanced performance with respect to minimising end-to-end delay and maximising channel utilisation.
2018-02-06
Komulainen, A., Nilsson, J., Sterner, U..  2017.  Effects of Topology Information on Routing in Contention-Based Underwater Acoustic Networks. OCEANS 2017 - Aberdeen. :1–7.

Underwater acoustic networks is an enabling technology for a range of applications such as mine countermeasures, intelligence and reconnaissance. Common for these applications is a need for robust information distribution while minimizing energy consumption. In terrestrial wireless networks topology information is often used to enhance the efficiency of routing, in terms of higher capacity and less overhead. In this paper we asses the effects of topology information on routing in underwater acoustic networks. More specifically, the interplay between long propagation delays, contention-based channels access and dissemination of varying degrees of topology information is investigated. The study is based on network simulations of a number of network protocols that make use of varying amounts of topology information. The results indicate that, in the considered scenario, relying on local topology information to reduce retransmissions may have adverse effects on the reliability. The difficult channel conditions and the contention-based channels access methods create a need for an increased amount of diversity, i.e., more retransmissions. In the scenario considered, an opportunistic flooding approach is a better, both in terms of robustness and energy consumption.