Visible to the public Biblio

Filters: Keyword is normal network traffic  [Clear All Filters]
2021-03-29
Johanyák, Z. C..  2020.  Fuzzy Logic based Network Intrusion Detection Systems. 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI). :15—16.

Plenary Talk Our everyday life is more and more dependent on electronic communication and network connectivity. However, the threats of attacks and different types of misuse increase exponentially with the expansion of computer networks. In order to alleviate the problem and to identify malicious activities as early as possible Network Intrusion Detection Systems (NIDSs) have been developed and intensively investigated. Several approaches have been proposed and applied so far for these systems. It is a common challenge in this field that often there are no crisp boundaries between normal and abnormal network traffic, there are noisy or inaccurate data and therefore the investigated traffic could represent both attack and normal communication. Fuzzy logic based solutions could be advantageous owing to their capability to define membership levels in different classes and to do different operations with results ensuring reduced false positive and false negative classification compared to other approaches. In this presentation, after a short introduction of NIDSs a survey will be done on typical fuzzy logic based solutions followed by a detailed description of a fuzzy rule interpolation based IDS. The whole development process, i.e. data preprocessing, feature extraction, rule base generation steps are covered as well.

2018-02-14
Kalliola, A., Lal, S., Ahola, K., Oliver, I., Miche, Y., Holtmanns, S..  2017.  Testbed for security orchestration in a network function virtualization environment. 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :1–4.

We present a testbed implementation for the development, evaluation and demonstration of security orchestration in a network function virtualization environment. As a specific scenario, we demonstrate how an intelligent response to DDoS and various other kinds of targeted attacks can be formulated such that these attacks and future variations can be mitigated. We utilise machine learning to characterise normal network traffic, attacks and responses, then utilise this information to orchestrate virtualized network functions around affected components to isolate these components and to capture, redirect and filter traffic (e.g. honeypotting) for additional analysis. This allows us to maintain a high level of network quality of service to given network functions and components despite adverse network conditions.