Visible to the public Biblio

Filters: Keyword is user-centric  [Clear All Filters]
2022-09-30
Kirupanithi, D.Nancy, Antonidoss, A..  2021.  Self-Sovereign Identity creation on Blockchain using Identity based Encryption. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS). :299–304.
The blockchain technology evolution in recent times has a hopefulness regarding the impression of self-sovereign identity that has a significant effect on the method of interacting with each other with security over the network. The existing system is not complete and procedural. There arises a different idea of self-sovereign identity methodology. To develop to the possibility, it is necessary to guarantee a better understanding in a proper way. This paper has an in-depth analysis of the attributes of the self-sovereign identity and it affects over the laws of identity that are being explored. The Identity management system(IMS) with no centralized authority is proposed in maintaining the secrecy of records, where as traditional systems are replaced by blockchains and identities are generated cryptographically. This study enables sharing of user data on permissioned blockchain which uses identity-based encryption to maintain access control and data security.
2018-02-14
Ayed, H. Kaffel-Ben, Boujezza, H., Riabi, I..  2017.  An IDMS approach towards privacy and new requirements in IoT. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :429–434.
Identities are known as the most sensitive information. With the increasing number of connected objects and identities (a connected object may have one or many identities), the computing and communication capabilities improved to manage these connected devices and meet the needs of this progress. Therefore, new IoT Identity Management System (IDMS) requirements have been introduced. In this work, we suggest an IDMS approach to protect private information and ensures domain change in IoT for mobile clients using a personal authentication device. Firstly, we present basic concepts, existing requirements and limits of related works. We also propose new requirements and show our motivations. Next, we describe our proposal. Finally, we give our security approach validation, perspectives, and some concluding remarks.
Feng, C., Wu, S., Liu, N..  2017.  A user-centric machine learning framework for cyber security operations center. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :173–175.

To assure cyber security of an enterprise, typically SIEM (Security Information and Event Management) system is in place to normalize security events from different preventive technologies and flag alerts. Analysts in the security operation center (SOC) investigate the alerts to decide if it is truly malicious or not. However, generally the number of alerts is overwhelming with majority of them being false positive and exceeding the SOC's capacity to handle all alerts. Because of this, potential malicious attacks and compromised hosts may be missed. Machine learning is a viable approach to reduce the false positive rate and improve the productivity of SOC analysts. In this paper, we develop a user-centric machine learning framework for the cyber security operation center in real enterprise environment. We discuss the typical data sources in SOC, their work flow, and how to leverage and process these data sets to build an effective machine learning system. The paper is targeted towards two groups of readers. The first group is data scientists or machine learning researchers who do not have cyber security domain knowledge but want to build machine learning systems for security operations center. The second group of audiences are those cyber security practitioners who have deep knowledge and expertise in cyber security, but do not have machine learning experiences and wish to build one by themselves. Throughout the paper, we use the system we built in the Symantec SOC production environment as an example to demonstrate the complete steps from data collection, label creation, feature engineering, machine learning algorithm selection, model performance evaluations, to risk score generation.