Visible to the public Biblio

Filters: Keyword is unmanned systems  [Clear All Filters]
2021-08-02
Fernandez, J., Allen, B., Thulasiraman, P., Bingham, B..  2020.  Performance Study of the Robot Operating System 2 with QoS and Cyber Security Settings. 2020 IEEE International Systems Conference (SysCon). :1—6.
Throughout the Department of Defense, there are ongoing efforts to increase cybersecurity and improve data transfer in unmanned robotic systems (UxS). This paper explores the performance of the Robot Operating System (ROS) 2, which is built with the Data Distribution Service (DDS) standard as a middleware. Based on how quality of service (QoS) parameters are defined in the robotic middleware interface, it is possible to implement strict delivery requirements to different nodes on a dynamic nodal network with multiple unmanned systems connected. Through this research, different scenarios with varying QoS settings were implemented and compared to baseline values to help illustrate the impact of latency and throughput on data flow. DDS security settings were also enabled to help understand the cost of overhead and performance when secured data is compared to plaintext baseline values. Our experiments were performed using a basic ROS 2 network consisting of two nodes (one publisher and one subscriber). Our experiments showed a measurable latency and throughput change between different QoS profiles and security settings. We analyze the trends and tradeoffs associated with varying QoS and security settings. This paper provides performance data points that can be used to help future researchers and developers make informative choices when using ROS 2 for UxS.
2018-02-14
Gutzwiller, R. S., Reeder, J..  2017.  Human interactive machine learning for trust in teams of autonomous robots. 2017 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA). :1–3.

Unmanned systems are increasing in number, while their manning requirements remain the same. To decrease manpower demands, machine learning techniques and autonomy are gaining traction and visibility. One barrier is human perception and understanding of autonomy. Machine learning techniques can result in “black box” algorithms that may yield high fitness, but poor comprehension by operators. However, Interactive Machine Learning (IML), a method to incorporate human input over the course of algorithm development by using neuro-evolutionary machine-learning techniques, may offer a solution. IML is evaluated here for its impact on developing autonomous team behaviors in an area search task. Initial findings show that IML-generated search plans were chosen over plans generated using a non-interactive ML technique, even though the participants trusted them slightly less. Further, participants discriminated each of the two types of plans from each other with a high degree of accuracy, suggesting the IML approach imparts behavioral characteristics into algorithms, making them more recognizable. Together the results lay the foundation for exploring how to team humans successfully with ML behavior.