Biblio
Internet of Things (IoT) and cloud computing are promising technologies that change the way people communicate and live. As the data collected through IoT devices often involve users' private information and the cloud is not completely trusted, users' private data are usually encrypted before being uploaded to cloud for security purposes. Searchable encryption, allowing users to search over the encrypted data, extends data flexibility on the premise of security. In this paper, to achieve the accurate and efficient ciphertext searching, we present an efficient multi-keyword ranked searchable encryption scheme supporting ciphertext-policy attribute-based encryption (CP-ABE) test (MRSET). For efficiency, numeric hierarchy supporting ranked search is introduced to reduce the dimensions of vectors and matrices. For practicality, CP-ABE is improved to support access right test, so that only documents that the user can decrypt are returned. The security analysis shows that our proposed scheme is secure, and the experimental result demonstrates that our scheme is efficient.
As cloud computing becomes prevalent, more and more data owners are likely to outsource their data to a cloud server. However, to ensure privacy, the data should be encrypted before outsourcing. Symmetric searchable encryption allows users to retrieve keyword over encrypted data without decrypting the data. Many existing schemes that are based on symmetric searchable encryption only support single keyword search, conjunctive keywords search, multiple keywords search, or single phrase search. However, some schemes, i.e., static schemes, only search one phrase in a query request. In this paper, we propose a multi-phrase ranked search over encrypted cloud data, which also supports dynamic update operations, such as adding or deleting files. We used an inverted index to record the locations of keywords and to judge whether the phrase appears. This index can search for keywords efficiently. In order to rank the results and protect the privacy of relevance score, the relevance score evaluation model is used in searching process on client-side. Also, the special construction of the index makes the scheme dynamic. The data owner can update the cloud data at very little cost. Security analyses and extensive experiments were conducted to demonstrate the safety and efficiency of the proposed scheme.