Visible to the public Biblio

Filters: Keyword is privacy-preserving methods  [Clear All Filters]
2019-03-06
Mito, M., Murata, K., Eguchi, D., Mori, Y., Toyonaga, M..  2018.  A Data Reconstruction Method for The Big-Data Analysis. 2018 9th International Conference on Awareness Science and Technology (iCAST). :319-323.
In recent years, the big-data approach has become important within various business operations and sales judgment tactics. Contrarily, numerous privacy problems limit the progress of their analysis technologies. To mitigate such problems, this paper proposes several privacy-preserving methods, i.e., anonymization, extreme value record elimination, fully encrypted analysis, and so on. However, privacy-cracking fears still remain that prevent the open use of big-data by other, external organizations. We propose a big-data reconstruction method that does not intrinsically use privacy data. The method uses only the statistical features of big-data, i.e., its attribute histograms and their correlation coefficients. To verify whether valuable information can be extracted using this method, we evaluate the data by using Self Organizing Map (SOM) as one of the big-data analysis tools. The results show that the same pieces of information are extracted from our data and the big-data.
2018-02-15
Yonetani, R., Boddeti, V. N., Kitani, K. M., Sato, Y..  2017.  Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption. 2017 IEEE International Conference on Computer Vision (ICCV). :2059–2069.

We propose a privacy-preserving framework for learning visual classifiers by leveraging distributed private image data. This framework is designed to aggregate multiple classifiers updated locally using private data and to ensure that no private information about the data is exposed during and after its learning procedure. We utilize a homomorphic cryptosystem that can aggregate the local classifiers while they are encrypted and thus kept secret. To overcome the high computational cost of homomorphic encryption of high-dimensional classifiers, we (1) impose sparsity constraints on local classifier updates and (2) propose a novel efficient encryption scheme named doublypermuted homomorphic encryption (DPHE) which is tailored to sparse high-dimensional data. DPHE (i) decomposes sparse data into its constituent non-zero values and their corresponding support indices, (ii) applies homomorphic encryption only to the non-zero values, and (iii) employs double permutations on the support indices to make them secret. Our experimental evaluation on several public datasets shows that the proposed approach achieves comparable performance against state-of-the-art visual recognition methods while preserving privacy and significantly outperforms other privacy-preserving methods.