Visible to the public Biblio

Filters: Keyword is rule extraction  [Clear All Filters]
2018-07-18
Yusheng, W., Kefeng, F., Yingxu, L., Zenghui, L., Ruikang, Z., Xiangzhen, Y., Lin, L..  2017.  Intrusion Detection of Industrial Control System Based on Modbus TCP Protocol. 2017 IEEE 13th International Symposium on Autonomous Decentralized System (ISADS). :156–162.

Modbus over TCP/IP is one of the most popular industrial network protocol that are widely used in critical infrastructures. However, vulnerability of Modbus TCP protocol has attracted widely concern in the public. The traditional intrusion detection methods can identify some intrusion behaviors, but there are still some problems. In this paper, we present an innovative approach, SD-IDS (Stereo Depth IDS), which is designed for perform real-time deep inspection for Modbus TCP traffic. SD-IDS algorithm is composed of two parts: rule extraction and deep inspection. The rule extraction module not only analyzes the characteristics of industrial traffic, but also explores the semantic relationship among the key field in the Modbus TCP protocol. The deep inspection module is based on rule-based anomaly intrusion detection. Furthermore, we use the online test to evaluate the performance of our SD-IDS system. Our approach get a low rate of false positive and false negative.

2015-04-30
Godwin, J.L., Matthews, P..  2014.  Rapid labelling of SCADA data to extract transparent rules using RIPPER. Reliability and Maintainability Symposium (RAMS), 2014 Annual. :1-7.

This paper addresses a robust methodology for developing a statistically sound, robust prognostic condition index and encapsulating this index as a series of highly accurate, transparent, human-readable rules. These rules can be used to further understand degradation phenomena and also provide transparency and trust for any underlying prognostic technique employed. A case study is presented on a wind turbine gearbox, utilising historical supervisory control and data acquisition (SCADA) data in conjunction with a physics of failure model. Training is performed without failure data, with the technique accurately identifying gearbox degradation and providing prognostic signatures up to 5 months before catastrophic failure occurred. A robust derivation of the Mahalanobis distance is employed to perform outlier analysis in the bivariate domain, enabling the rapid labelling of historical SCADA data on independent wind turbines. Following this, the RIPPER rule learner was utilised to extract transparent, human-readable rules from the labelled data. A mean classification accuracy of 95.98% of the autonomously derived condition was achieved on three independent test sets, with a mean kappa statistic of 93.96% reported. In total, 12 rules were extracted, with an independent domain expert providing critical analysis, two thirds of the rules were deemed to be intuitive in modelling fundamental degradation behaviour of the wind turbine gearbox.