Biblio
We investigate what we call the "Bitcoin Generator Scam" (BGS), a simple system in which the scammers promise to "generate" new bitcoins using the ones that were sent to them. A typical offer will suggest that, for a small fee, one could receive within minutes twice the amount of bitcoins submitted. BGS is clearly not a very sophisticated attack. The modus operandi is simply to put up some web page on which to find the address to send the money and wait for the payback. The pages are then indexed by search engines, and ready to find for victims looking for free bitcoins. We describe here a generic system to find and analyze scams such as BGS. We have trained a classifier to detect these pages, and we have a crawler searching for instances using a series of search engines. We then monitor the instances that we find to trace payments and bitcoin addresses that are being used over time. Unlike most bitcoin-based scam monitoring systems, we do not rely on analyzing transactions on the blockchain to find scam instances. Instead, we proactively find these instances through the web pages advertising the scam. Thus our system is able to find addresses with very few transactions, or even none at all. Indeed, over half of the addresses that have eventually received funds were detected before receiving any transactions. The data for this paper was collected over four months, from November 2019 to February 2020. We have found more than 1,300 addresses directly associated with the scam, hosted on over 500 domains. Overall, these addresses have received (at least) over 5 million USD to the scam, with an average of 47.3 USD per transaction.
Bitcoin is the most famous cryptocurrency currently operating with a total marketcap of almost 7 billion USD. This innovation stands strong on the feature of pseudo anonymity and strives on its innovative de-centralized architecture based on the Blockchain. The Blockchain is a distributed ledger that keeps a public record of all the transactions processed on the bitcoin protocol network in full transparency without revealing the identity of the sender and the receiver. Over the course of 2016, cryptocurrencies have shown some instances of abuse by criminals in their activities due to its interesting nature. Darknet marketplaces are increasing the volume of their businesses in illicit and illegal trades but also cryptocurrencies have been used in cases of extortion, ransom and as part of sophisticated malware modus operandi. We tackle these challenges by developing an analytical capability that allows us to map relationships on the blockchain and filter crime instances in order to investigate the abuse in law enforcement local environment. We propose a practical bitcoin analytical process and an analyzing system that stands alone and manages all data on the blockchain in real-time with tracing and visualizing techniques rendering transactions decipherable and useful for law enforcement investigation and training. Our system adopts combination of analyzing methods that provides statistics of address, graphical transaction relation, discovery of paths and clustering of already known addresses. We evaluated our system in the three criminal cases includes marketplace, ransomware and DDoS extortion. These are practical training in law enforcement, then we determined whether our system could help investigation process and training.