Biblio
There were many researches about the parameter estimation of canonical dynamic systems recently. Extended Kalman filter (EKF) is a popular parameter estimation method in virtue of its easy applications. This paper focuses on parameter estimation for a class of canonical dynamic systems by EKF. By constructing associated differential equation, the convergence of EKF parameter estimation for the canonical dynamic systems is analyzed. And the simulation demonstrates the good performance.
Electro-hydraulic servo actuation system is a mechanical, electrical and hydraulic mixing complex system. If it can't be repaired for a long time, it is necessary to consider the possibility of occurrence of multiple faults. Considering this possibility, this paper presents an extended Kalman filter (EKF) based method for multiple faults diagnosis. Through analysing the failure modes and mechanism of the electro-hydraulic servo actuation system and modelling selected typical failure modes, the relationship between the key parameters of the system and the faults is obtained. The extended Kalman filter which is a commonly used algorithm for estimating parameters is used to on-line fault diagnosis. Then use the extended Kalman filter to diagnose potential faults. The simulation results show that the multi-fault diagnosis method based on extended Kalman filter is effective for multi-fault diagnosis of electro-hydraulic servo actuation system.