Visible to the public Biblio

Filters: Keyword is transmission lines  [Clear All Filters]
2019-04-05
Shu, H., Shen, X., Xu, L., Guo, Q., Sun, H..  2018.  A Validity Test Methodfor Transmission Betweens and Transmission Sections Based on Chain Attack Analysisand Line Outage Distribution Factors. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1-6.

The identification of transmission sections is used to improve the efficiency of monitoring the operation of the power grid. In order to test the validity of transmission sections identified, an assessment process is necessary. In addition, Transmission betweenness, an index for finding the key transmission lines in the power grid, should also be verified. In this paper, chain attack is assumed to check the weak links in the grid, thus verifying the transmission betweenness implemented for the system. Moreover, the line outage distribution factors (LODFs) are used to quantify the change of power flow when the leading line in transmission sections breaks down, so that the validity of transmission sections can be proved. Case studies based on IEEE 39 and IEEE 118 -bus system proved the effectiveness of the proposed method.

2018-06-07
Hinojosa, V., Gonzalez-Longatt, F..  2017.  Stochastic security-constrained generation expansion planning methodology based on a generalized line outage distribution factors. 2017 IEEE Manchester PowerTech. :1–6.

In this study, it is proposed to carry out an efficient formulation in order to figure out the stochastic security-constrained generation capacity expansion planning (SC-GCEP) problem. The main idea is related to directly compute the line outage distribution factors (LODF) which could be applied to model the N - m post-contingency analysis. In addition, the post-contingency power flows are modeled based on the LODF and the partial transmission distribution factors (PTDF). The post-contingency constraints have been reformulated using linear distribution factors (PTDF and LODF) so that both the pre- and post-contingency constraints are modeled simultaneously in the SC-GCEP problem using these factors. In the stochastic formulation, the load uncertainty is incorporated employing a two-stage multi-period framework, and a K - means clustering technique is implemented to decrease the number of load scenarios. The main advantage of this methodology is the feasibility to quickly compute the post-contingency factors especially with multiple-line outages (N - m). This concept would improve the security-constraint analysis modeling quickly the outage of m transmission lines in the stochastic SC-GCEP problem. It is carried out several experiments using two electrical power systems in order to validate the performance of the proposed formulation.

2018-05-24
Huang, P., Wang, Y., Yan, G..  2017.  Vulnerability Analysis of Electrical Cyber Physical Systems Using a Simulation Platform. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :489–494.

This paper considers a framework of electrical cyber-physical systems (ECPSs) in which each bus and branch in a power grid is equipped with a controller and a sensor. By means of measuring the damages of cyber attacks in terms of cutting off transmission lines, three solution approaches are proposed to assess and deal with the damages caused by faults or cyber attacks. Splitting incident is treated as a special situation in cascading failure propagation. A new simulation platform is built for simulating the protection procedure of ECPSs under faults. The vulnerability of ECPSs under faults is analyzed by experimental results based on IEEE 39-bus system.

2018-02-15
Silva, P. R. N., Carvalho, A. P., Gabbar, H. A., Vieira, P., Costa, C. T..  2017.  Fault Diagnosis in Transmission Lines Based on Leakage Current and Qualitative Trend Analysis. 2017 International Conference on Promising Electronic Technologies (ICPET). :87–92.

Transmission lines' monitoring systems produce a large amount of data that hinders faults diagnosis. For this reason, approaches that can acquire and automatically interpret the information coming from lines' monitoring are needed. Furthermore, human errors stemming from operator dependent real-time decision need to be reduced. In this paper a multiple faults diagnosis method to determine transmission lines' operating conditions is proposed. Different scenarios, including insulator chains contamination with different types and concentrations of pollutants were modeled by equivalents circuits. Their performance were characterized by leakage current (LC) measurements and related to specific fault modes. Features extraction's algorithm relying on the difference between normal and faulty conditions were used to define qualitative trends for the diagnosis of various fault modes.