Visible to the public Biblio

Filters: Keyword is fault analysis  [Clear All Filters]
2022-10-16
Hauschild, Florian, Garb, Kathrin, Auer, Lukas, Selmke, Bodo, Obermaier, Johannes.  2021.  ARCHIE: A QEMU-Based Framework for Architecture-Independent Evaluation of Faults. 2021 Workshop on Fault Detection and Tolerance in Cryptography (FDTC). :20–30.
Fault injection is a major threat to embedded system security since it can lead to modified control flows and leakage of critical security parameters, such as secret keys. However, injecting physical faults into devices is cumbersome and difficult since it requires a lot of preparation and manual inspection of the assembly instructions. Furthermore, a single fault injection method cannot cover all possible fault types. Simulating fault injection in comparison, is, in general, less costly, more time-efficient, and can cover a large amount of possible fault combinations. Hence, many different fault injection tools have been developed for this purpose. However, previous tools have several drawbacks since they target only individual architectures or cover merely a limited amount of the possible fault types for only specific memory types. In this paper, we present ARCHIE, a QEMU-based architecture-independent fault evaluation tool, that is able to simulate transient and permanent instruction and data faults in RAM, flash, and processor registers. ARCHIE supports dynamic code analysis and parallelized execution. It makes use of the Tiny Code Generator (TCG) plugin, which we extended with our fault plugin to enable read and write operations from and to guest memory. We demonstrate ARCHIE’s capabilities through automatic binary analysis of two exemplary applications, TinyAES and a secure bootloader, and validate our tool’s results in a laser fault injection experiment. We show that ARCHIE can be run both on a server with extensive resources and on a common laptop. ARCHIE can be applied to a wide range of use cases for analyzing and enhancing open source and proprietary firmware in white, grey, or black box tests.
2018-02-15
Wang, M., Qu, Z., He, X., Li, T., Jin, X., Gao, Z., Zhou, Z., Jiang, F., Li, J..  2017.  Real time fault monitoring and diagnosis method for power grid monitoring and its application. 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). :1–6.

In Energy Internet mode, a large number of alarm information is generated when equipment exception and multiple faults in large power grid, which seriously affects the information collection, fault analysis and delays the accident treatment for the monitors. To this point, this paper proposed a method for power grid monitoring to monitor and diagnose fault in real time, constructed the equipment fault logical model based on five section alarm information, built the standard fault information set, realized fault information optimization, fault equipment location, fault type diagnosis, false-report message and missing-report message analysis using matching algorithm. The validity and practicality of the proposed method by an actual case was verified, which can shorten the time of obtaining and analyzing fault information, accelerate the progress of accident treatment, ensure the safe and stable operation of power grid.