Visible to the public Biblio

Filters: Keyword is storage systems  [Clear All Filters]
2021-01-11
Wang, W.-C., Ho, C.-C., Chang, Y.-M., Chang, Y.-H..  2020.  Challenges and Designs for Secure Deletion in Storage Systems. 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN). :181–189.
Data security has risen to be one of the most critical concerns of computer professionals. Tighter legal requirements now exist for the purpose of protecting user data from unauthorized uses and for both preserving and erasing/sanitizing data records to meet legal compliance requirements. To meet the data security requirement, many secure (data) deletion techniques have been proposed to deal with the data security concerns from different system layers. This paper surveys the state-of-the-art secure deletion techniques that have been designed to pursue higher efficiency, verifiability, and portability for emerging types of hard disk drives and flash-based solid-state drives. Meanwhile, the pros and cons of implementing secure deletion in different system layers are also discussed, so as to assist in pursuing better secure deletion designs for future storage systems.
2018-06-11
Sun, Yuanyuan, Hua, Yu, Liu, Xue, Cao, Shunde, Zuo, Pengfei.  2017.  DLSH: A Distribution-aware LSH Scheme for Approximate Nearest Neighbor Query in Cloud Computing. Proceedings of the 2017 Symposium on Cloud Computing. :242–255.
Cloud computing needs to process and analyze massive high-dimensional data in a real-time manner. Approximate queries in cloud computing systems can provide timely queried results with acceptable accuracy, thus alleviating the consumption of a large amount of resources. Locality Sensitive Hashing (LSH) is able to maintain the data locality and support approximate queries. However, due to randomly choosing hash functions, LSH has to use too many functions to guarantee the query accuracy. The extra computation and storage overheads exacerbate the real performance of LSH. In order to reduce the overheads and deliver high performance, we propose a distribution-aware scheme, called DLSH, to offer cost-effective approximate nearest neighbor query service for cloud computing. The idea of DLSH is to leverage the principal components of the data distribution as the projection vectors of hash functions in LSH, further quantify the weight of each hash function and adjust the interval value in each hash table. We then refine the queried result set based on the hit frequency to significantly decrease the time overhead of distance computation. Extensive experiments in a large-scale cloud computing testbed demonstrate significant improvements in terms of multiple system performance metrics. We have released the source code of DLSH for public use.
2015-04-30
Goldman, A.D., Uluagac, A.S., Copeland, J.A..  2014.  Cryptographically-Curated File System (CCFS): Secure, inter-operable, and easily implementable Information-Centric Networking. Local Computer Networks (LCN), 2014 IEEE 39th Conference on. :142-149.

Cryptographically-Curated File System (CCFS) proposed in this work supports the adoption of Information-Centric Networking. CCFS utilizes content names that span trust boundaries, verify integrity, tolerate disruption, authenticate content, and provide non-repudiation. Irrespective of the ability to reach an authoritative host, CCFS provides secure access by binding a chain of trust into the content name itself. Curators cryptographically bind content to a name, which is a path through a series of objects that map human meaningful names to cryptographically strong content identifiers. CCFS serves as a network layer for storage systems unifying currently disparate storage technologies. The power of CCFS derives from file hashes and public keys used as a name with which to retrieve content and as a method of verifying that content. We present results from our prototype implementation. Our results show that the overhead associated with CCFS is not negligible, but also is not prohibitive.