Biblio
Cryptographically-Curated File System (CCFS) proposed in this work supports the adoption of Information-Centric Networking. CCFS utilizes content names that span trust boundaries, verify integrity, tolerate disruption, authenticate content, and provide non-repudiation. Irrespective of the ability to reach an authoritative host, CCFS provides secure access by binding a chain of trust into the content name itself. Curators cryptographically bind content to a name, which is a path through a series of objects that map human meaningful names to cryptographically strong content identifiers. CCFS serves as a network layer for storage systems unifying currently disparate storage technologies. The power of CCFS derives from file hashes and public keys used as a name with which to retrieve content and as a method of verifying that content. We present results from our prototype implementation. Our results show that the overhead associated with CCFS is not negligible, but also is not prohibitive.