Visible to the public Biblio

Filters: Keyword is Multi Factor Authentication  [Clear All Filters]
2019-05-20
Velthuis, Paul J. E., Schäfer, Marcel, Steinebach, Martin.  2018.  New Authentication Concept Using Certificates for Big Data Analytic Tools. Proceedings of the 13th International Conference on Availability, Reliability and Security. :40:1–40:7.

Companies analyse large amounts of data on clusters of machines, using big data analytic tools such as Apache Spark and Apache Flink to analyse the data. Big data analytic tools are mainly tested regarding speed and reliability. Efforts about Security and thus authentication are spent only at second glance. In such big data analytic tools, authentication is achieved with the help of the Kerberos protocol that is basically built as authentication on top of big data analytic tools. However, Kerberos is vulnerable to attacks, and it lacks providing high availability when users are all over the world. To improve the authentication, this work presents first an analysis of the authentication in Hadoop and the data analytic tools. Second, we propose a concept to deploy Transport Layer Security (TLS) not only for the security of data transportation but as well for authentication within the big data tools. This is done by establishing the connections using certificates with a short lifetime. The proof of concept is realized in Apache Spark, where Kerberos is replaced by the method proposed. We deploy new short living certificates for authentication that are less vulnerable to abuse. With our approach the requirements of the industry regarding multi-factor authentication and scalability are met.

2018-02-15
Ramatsakane, K. I., Leung, W. S..  2017.  Pick location security: Seamless integrated multi-factor authentication. 2017 IST-Africa Week Conference (IST-Africa). :1–10.

Authentication is one of the key aspects of securing applications and systems alike. While in most existing systems this is achieved using usernames and passwords it has been continuously shown that this authentication method is not secure. Studies that have been conducted have shown that these systems have vulnerabilities which lead to cases of impersonation and identity theft thus there is need to improve such systems to protect sensitive data. In this research, we explore the combination of the user's location together with traditional usernames and passwords as a multi factor authentication system to make authentication more secure. The idea involves comparing a user's mobile device location with that of the browser and comparing the device's Bluetooth key with the key used during registration. We believe by leveraging existing technologies such as Bluetooth and GPS we can reduce implementation costs whilst improving security.