Visible to the public Biblio

Filters: Keyword is cloud adoption  [Clear All Filters]
2019-11-25
Wu, Songrui, Li, Qi, Li, Guoliang, Yuan, Dong, Yuan, Xingliang, Wang, Cong.  2019.  ServeDB: Secure, Verifiable, and Efficient Range Queries on Outsourced Database. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :626–637.

Data outsourcing to cloud has been a common IT practice nowadays due to its significant benefits. Meanwhile, security and privacy concerns are critical obstacles to hinder the further adoption of cloud. Although data encryption can mitigate the problem, it reduces the functionality of query processing, e.g., disabling SQL queries. Several schemes have been proposed to enable one-dimensional query on encrypted data, but multi-dimensional range query has not been well addressed. In this paper, we propose a secure and scalable scheme that can support multi-dimensional range queries over encrypted data. The proposed scheme has three salient features: (1) Privacy: the server cannot learn the contents of queries and data records during query processing. (2) Efficiency: we utilize hierarchical cubes to encode multi-dimensional data records and construct a secure tree index on top of such encoding to achieve sublinear query time. (3) Verifiability: our scheme allows users to verify the correctness and completeness of the query results to address server's malicious behaviors. We perform formal security analysis and comprehensive experimental evaluations. The results on real datasets demonstrate that our scheme achieves practical performance while guaranteeing data privacy and result integrity.

2018-02-15
Arora, A., Khanna, A., Rastogi, A., Agarwal, A..  2017.  Cloud security ecosystem for data security and privacy. 2017 7th International Conference on Cloud Computing, Data Science Engineering - Confluence. :288–292.

In the past couple of years Cloud Computing has become an eminent part of the IT industry. As a result of its economic benefits more and more people are heading towards Cloud adoption. In present times there are numerous Cloud Service providers (CSP) allowing customers to host their applications and data onto Cloud. However Cloud Security continues to be the biggest obstacle in Cloud adoption and thereby prevents customers from accessing its services. Various techniques have been implemented by provides in order to mitigate risks pertaining to Cloud security. In this paper, we present a Hybrid Cryptographic System (HCS) that combines the benefits of both symmetric and asymmetric encryption thus resulting in a secure Cloud environment. The paper focuses on creating a secure Cloud ecosystem wherein we make use of multi-factor authentication along with multiple levels of hashing and encryption. The proposed system along with the algorithm are simulated using the CloudSim simulator. To this end, we illustrate the working of our proposed system along with the simulated results.